
Network Modeling

Viviana Amati Jürgen Lerner

Dept. Computer & Information Science
University of Konstanz

Winter 2015/2016
(last updated: January 11, 2016)



Outline.
Introduction.
Running example: data, questions, and simple answers.
Random graph models.
G(n,p).

Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Hypothesis testing and parameter estimation.
Near-degeneracy and multi-modality of ERGMs.
Hammersley-Clifford Theorem.
Miscellaneous.



Outline.
Introduction.
Running example: data, questions, and simple answers.
Random graph models.
G(n,p).

Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Hypothesis testing and parameter estimation.
Near-degeneracy and multi-modality of ERGMs.
Hammersley-Clifford Theorem.
Miscellaneous.



Topic of this lecture.

Statistical models for social networks.



Topic of this lecture.

Statistical models for social networks.

Social networks consist of actors and relations among them.

I actors: persons, organizations, companies, countries, . . .
I relations: friendship, asking for advice, communication,

collaboration, trade, war, . . .

Actors and ties may have associated data (attributes).



Topic of this lecture.

Statistical models for social networks.

Statistics can formulate precise statements about uncertainty.

What would happen, if we measured the data again?
I at a different point in time,
I on a different set of actors,
I with different environmental factors, . . .

Want to estimate expected outcome ± variability

⇒ to explain and predict social relations and behavior.



Topic of this lecture.

Statistical models for social networks specify probability
distributions for social networks.

I How likely is it that two actors are connected by a tie?
I dependent on their attributes
I dependent on their ties to other actors

I How likely is it that an actor has certain attributes?
I dependent on its ties
I dependent on the attributes of its neighbors

Provide a framework for tackling many research questions in
the social sciences.



Example: friendship network among pupils.
Nodes colored by level of delinquent behavior.

Can you see some pattern? Can you find explanations?



Social influence vs. social selection.

Network ties and actor behavior evolve over time.

network(t)

behavior(t)

network(t + 1)

behavior(t + 1)

social selection

social influence

Social influence.
I E. g., friends of delinquent pupils become delinquent.

Social selection.
I E. g., delinquent pupils choose delinquent friends.

Dependency among network ties.
I E. g., friends of friends become friends (transitivity).

Correlation of individual attributes.
I E. g., boys are more delinquent.



Statistical network models serve several purposes.

Explaining social relations and/or behavior
I search for rules that govern the evolution of social

networks.

Predicting social relations and/or behavior
I learn from given data and predict the data yet to come.

Random generation of networks that look like real data
I simulation of network processes (e. g., information

spreading, spread of disease);
I algorithm engineering: empirical estimation of average

runtime or performance.
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Example data: directed friendship network.
A. Knecht (2008): “Friendship Selection and Friends’ Influence”.

Four time points in the pupils’ first year at secondary school.

Constant actor covariates:
I demographics: sex, age, ethnicity, and religion
I assessment of pupil’s capacity at the end of primary school

Changing actor covariates (behavior):
I delinquency (stealing, vandalism, graffiti, and fighting)
I alcohol consumption (only at time steps 2 – 4)

Constant dyadic variable: same primary school



Two types of dependent variables: ties and behavior.

Friendship tie from A to B
can be modeled as a probabilistic function of
I demographics of A and B (social selection);
I behavior of A and B (social selection);
I (non-)existence of tie from B to A (reciprocity);
I other friends of A or B or both (e. g., transitivity)

Delinquent behavior of student A
can be modeled as a probabilistic function of
I A’s demographics (sex, age, ethnicity, religion);
I behavior of A’s friends (social influence);
I A’s friendship ties; . . .



Running hypotheses.

H1 Pupils chose friends with the same gender.

H2 Pupils reciprocate friendship.

H3 The friend of a friend is a friend.

H4 Pupils chose friends with similar delinquency behavior.

H5 Pupils adopt delinquent behavior from their friends.



First test: social selection by gender.

Hypothesis: Pupils chose friends with the same gender.

More precisely: the probability of friendship between pupils with
the same gender is higher.

Method: divide pairs of pupils (dyads) into two classes

D1 = {(A,B) ; gender(A) = gender(B)}

D2 = {(A,B) ; gender(A) 6= gender(B)}

Compare ratio of friendship ties in the two groups.

# ties in D1

# dyads in D1
vs.

# ties in D2

# dyads in D2

Result:
105
312

= 0.3365 vs.
31
288

= 0.1076
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Significance of observed difference.

0.11 probability for friendship between different gender

0.34 probability for friendship between same gender

Could this difference be just accidental?

If we divided pupils into two meaningless groups, the
tie probability would also not be equal.

Repeat the analysis 1000 times with random gender
assignment:

⇒ average difference is 0.035; maximum is 0.142



Significance of observed difference.

0.11 probability for friendship between different gender

0.34 probability for friendship between same gender

Could this difference be just accidental?

If we divided pupils into two meaningless groups, the
tie probability would also not be equal.

Repeat the analysis 1000 times with random gender
assignment:

⇒ average difference is 0.035; maximum is 0.142



Have to control for alternative explanations.

Maybe friendship is only seemingly influenced by gender
equality; the “true” explanatory variable might be

I primary school
and boys/girls happen to go more often to the same one

I behavior
and boys/girls have similar behavior to other boys/girls

I other ties in the networks. . .

We need a model that can control for the influence of other
variables.



Modeling the occurence of ties by logistic regression.

Random variable Yuv for tie from u to v

Yuv =

{
1 with probability puv ;
0 with probability 1− puv .

puv = someFunctionOf(statistics,parameters)

The statistics (explanatory variables) quantify characteristics of
the dyad (u, v) in the observed network.

The parameters quantify the influence of those variables on the
tie-probability:

I a positive (negative) parameter means: the higher the
statistic the higher (lower)the probability;

I a zero parameter means: the statistic has no influence on
the tie-probability.

Parameters are estimated from the observed network.



Modeling the occurence of ties by logistic regression.
Probability puv of a tie from u to v specified as

puv = logit−1(θ · s) =
exp(θ · s)

exp(θ · s) + 1
, where

s = (s1, . . . , sk ) ∈ Rk statistics
θ = (θ1, . . . , θk ) ∈ Rk parameters

θ · s =
k∑

i=1

θi · si

The statistics si = si(u, v ; y) are functions of the observed data.

The parameters are estimated to maximize the probability of
the observed network y :

P(Y = y) =
∏
u 6=v

pyuv
uv · (1− puv )1−yuv .



Results from logistic regression.

Gender model: friendship ties explained by gender-equality

puv = logit−1(θ1 + θ2 · sameGender(u, v)) .

Results:

statistic parameter Std. Error Pr(>|z|)
(Intercept) -2.1151 0.1901 < 2e-16 ***
sameGender 1.4363 0.2247 1.64e-10 ***

Implied probability for ties by gender-equality:

p = 0.1076 for friendship between pupils with different gender
p = 0.3365 for friendship between pupils with same gender



Results from logistic regression.

Delinquency model: friendship ties explained by similar
behavior

puv = logit−1(θ1 + θ2 · similarDelinquency(u, v)) .

Results:

statistic parameter Std. Error Pr(>|z|)
(Intercept) -1.5880 0.1796 <2e-16 ***
similarDelinquency 0.6568 0.2619 0.0121 *

similarDelinquency(u, v) =
∆− |delin(u)− delin(v)|

∆
,

where ∆ = maximal difference in delinquency



Results from logistic regression.

More complex model: control for alternative explanations:

puv = logit−1

(
k∑

i=1

θi · si(u, v ; y)

)
, with

si(u, v ; y) interpretation
1 constant (intercept)

sameGender(u, v) gender homophily
similarDelinquency(u, v) behavior homophily

yvu reciprocity∑
w yuw · ywv transitivity (friend of friend is friend)



Results from logistic regression.

More complex model:

puv = logit−1

(
k∑

i=1

θi · si(u, v ; y)

)

Results:

statistic parameter Std. Error Pr(>|z|)
(Intercept) -4.3664379 0.3915032 < 2e-16 ***
sameGender 1.2644640 0.3036323 3.12e-05 ***
similarDelinquency -0.0009412 0.3594857 0.998
reciprocity 2.0621869 0.2838916 3.76e-13 ***
transitivity 0.9420077 0.0918453 < 2e-16 ***



The analysis so far is invalid.

Logistic regression is only valid for independent observations.

yuv sameGender simDelinquency yvu
∑

w yuw · ywv
1 1 0.5 1 3
1 1 0.5 1 0
0 0 0.1 1 1
1 0 0.1 0 2

. . . . . .

In our case, the different observations (rows) are not
independent.
This is even implied by the model itself.
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yuv sameGender simDelinquency yvu
∑

w yuw · ywv
1 1 0.5 1 3
1 1 0.5 1 0
0 0 0.1 1 1
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. . . . . .

In our case, the different observations (rows) are not
independent.
This is even implied by the model itself.



Discrepancy between observation and model.

Randomly drawing ties from the logistic regression model.

observed network simulated network
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Probability space (intuition).

A probability space models the likeliness of outcomes of a
random experiment (observation, measurement, . . . ).

Two components:

What could happen? ⇒ defines set of possible outcomes.

How likely is an outcome? ⇒ defines probability distribution.



Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).



Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).

Example (dice)
Ω = {1,2,3,4,5,6} (possible outcomes when throwing a die)
P(ω) = 1/6 for all ω ∈ Ω (uniform probability)
Ω′ = {1,3,5} (throwing an odd number)



Background: finite probability space.

Definition
A finite probability space is a pair (Ω,P), where

I Ω is a finite set (possible outcomes)
I P : Ω→ [0,1] a function satisfying

∑
ω∈Ω P(ω) = 1.

Notation
I P(ω) is called the probability of ω ∈ Ω.
I The probability of a subset Ω′ ⊆ Ω is defined by

P(Ω′) =
∑

ω∈Ω′ P(ω).

Example (lottery)
Ω = {X ⊂ {1, . . . ,49} ; |X | = 6} (sets of 6 different numbers)

P(ω) =
(49

6

)−1
= 6!43!

49! for all ω ∈ Ω (uniform probability)



Background: graphs.

Definition
A graph is a pair G = (V ,E), where V is a finite set of vertices
and E the set of edges.

I undirected graph: E ⊆
(V

2

)
= {{u, v} ; u, v ∈ V}

I directed graph: E ⊆ V × V = {(u, v) ; u, v ∈ V}
I loop: edge from a vertex to itself

The elements that can be edges are called dyads.

Interpretation:
I vertices correspond to actors
I edges form the relation among

them



Background: adjacency matrices.

Definition
Let G = (V ,E) be a graph with an ordered set of vertices
V = {v1, . . . , vn}. The adjacency matrix associated with G is a
binary n × n matrix y = (yij)i,j∈1,...n with

yij =

{
1 if (vi , vj) ∈ E
0 if (vi , vj) 6∈ E

A

B

C

D

A B C D
A 0 0 1 0
B 1 0 0 0
C 1 1 0 0
D 1 0 0 0



What are the possible outcomes of a network experiment
(observation, measurement, . . . )?



Assign probabilities to individual ties.
What are the possible outcomes of a network experiment?

We have a set of actors V = {v1, . . . , vn}
I defining a set of dyads (pairs of actors)

D = {(vi , vj) ∈ V × V}.

Each of these dyads (vi , vj) is associated with a observation yij
that has two possible outcomes:

I yij = 1 if there is a tie from vi to vj ;
I yij = 0 if there is no tie from vi to vj .

Each of the two outcomes happens with a certain probability
where

P(Yij = 1) + P(Yij = 0) = 1 .



Assign probabilities to individual ties.
What are the possible outcomes of a network experiment?

Suppose we are given tie probabilities pij = P(Yij = 1) for all
dyads (vi , vj) ∈ V × V .

Does this imply probabilities for higher-order structures?

vi vj

yij

yji

Four different possible outcomes with the probabilities:

P(Yij = 1 ∧ Yji = 1) = pij · pji

P(Yij = 1 ∧ Yji = 0) = pij · (1− pji)

P(Yij = 0 ∧ Yji = 1) = (1− pij) · pji

P(Yij = 0 ∧ Yji = 0) = (1− pij) · (1− pji)

Is this supported by the empirical data?



Assign probabilities to individual ties.
What are the possible outcomes of a network experiment?

Empirical probabilities in the Knecht Classroom Data.

Tie-probability p = pij = P(Yij = 1) = 136/(25 · 24) = 0.23

predicted empirical
P(Yij = 1 ∧ Yji = 1) 0.05 0.13
P(Yij = 1 ∧ Yji = 0) 0.18 0.10
P(Yij = 0 ∧ Yji = 1) 0.18 0.10
P(Yij = 0 ∧ Yji = 0) 0.59 0.67

Apparently it is not enough to specify the individual tie
probabilities.



Assign probabilities to dyads and their reverse.
What are the possible outcomes of a network experiment?

We consider each dyad (vi , vj) together with its reverse (vj , vi).

vi vj

Observing such a pair of dyads can can lead to four different
outcomes:

Yij = 1 ∧ Yji = 1 both ties are there
Yij = 1 ∧ Yji = 0 (vi , vj) ∈ E but (vj , vi) 6∈ E
Yij = 0 ∧ Yji = 1 (vi , vj) 6∈ E but (vj , vi) ∈ E
Yij = 0 ∧ Yji = 0 none of the two ties is there

The probabilities of these four outcomes have to add up to one.



Assign probabilities to dyads and their reverse.
What are the possible outcomes of a network experiment?

Problem: the probability of a tie (vi , vj) can also depend on ties
with other actors.

vi vj

vk

Specifying different probabilities to all possible outcomes on a
triplet (vi , vj , vk ) doesn’t help either.



The possible outcomes of a network experiment (observation,
measurement, . . . ) are networks.



Random graph models (definition).

Definition
A random graph model is a probability space (G,P), where the
set of possible outcomes G is a (finite) set of graphs.

Example (uniform random graph model)
Let G be the set of all undirected, loopless graphs with vertex
set V = {1, . . . ,n} and let P be defined by

P : G → R; P(G) =
1

2
n(n−1)

2

.

Then (G,P) is a random graph model.



Random graph models (definition).

Definition
A random graph model is a probability space (G,P), where the
set of possible outcomes G is a (finite) set of graphs.

Example (uniform random graph model)
Let G be the set of all undirected, loopless graphs with vertex
set V = {1, . . . ,n} and let P be defined by

P : G → R; P(G) =
1

2
n(n−1)

2

.

Then (G,P) is a random graph model.



Random graph models: remark.

We consider only random graph models (G,P) in which all
graphs in G have the same set of vertices;
usually V = {1, . . . ,n}.

The set of vertices is fixed; all the randomness is in the edges.



Random graph models: edge probability.

Let (G,P) be a random graph model.
P : G → [0,1] defines a probability for each graph.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

When we say “probability of an edge e”, we mean P(Ge);
sometimes written as P(e) or P(e ∈ E).

Thus, assigning a probability to each graph determines the
probability of individual edges.

Note: this does not hold the other way round.
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Random graph models: edge probability.

Let (G,P) be a random graph model.
P : G → [0,1] defines a probability for each graph.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

When we say “probability of an edge e”, we mean P(Ge);
sometimes written as P(e) or P(e ∈ E).

Thus, assigning a probability to each graph determines the
probability of individual edges.

Note: this does not hold the other way round.



Example: two random graph models.

Let G be the set of undirected, loopless graphs G = (V ,E) with
V = {1,2,3}. The set of dyads is D = {{1,2}, {1,3}, {2,3}}.

Define P1 by P1(G) = 1/8 for all G ∈ G.

Define P2 by

P2(G) =

{
1/2 if E = ∅ or E = D;
0 else

Both models define the same edge probabilities; but the models
are not the same.



Independence and non-independence of edges.
(intuition)

In some cases the existence of an edge (or several edges)
changes the probability of other edges.

P(e) P(e)

For instance: P(e) is expected to increase when the nodes
incident to e are indirectly connected via a third node.



Independence and non-independence of edges.
small facebook network

769 nodes, 295 296 dyads, 16 656 edges
⇒ average edge probability is 0.056

186 722 dyads are indirectly connected via a third node;
16 556 of these are edges⇒ average conditional edge
probability for indirectly connected nodes is 0.089



Independence and non-independence of edges.
small facebook network

769 nodes, 295 296 dyads, 16 656 edges
⇒ average edge probability is 0.056

186 722 dyads are indirectly connected via a third node;
16 556 of these are edges⇒ average conditional edge
probability for indirectly connected nodes is 0.089



Independence and non-independence of edges.
Knecht Classroom Data

puv = logit−1

(
k∑

i=1

θi · si(u, v ; y)

)

statistic parameter Std. Error Pr(>|z|)
(Intercept) -4.3664379 0.3915032 < 2e-16 ***
sameGender 1.2644640 0.3036323 3.12e-05 ***
similarDelinquency -0.0009412 0.3594857 0.998
reciprocity 2.0621869 0.2838916 3.76e-13 ***
transitivity 0.9420077 0.0918453 < 2e-16 ***

Non-zero parameters for reciprocity and transitivity indicate
non-independence of edges.



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.
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P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
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P(B)
.

Example (probability space: dice)
Aodd = {1,3,5} and A≤4 = {1,2,3,4} are independent.



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
Aodd = {1,3,5} and A≤3 = {1,2,3} are not independent.



Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
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Background: independence and conditional prob.

Definition
I Two subsets A,B ⊆ Ω are independent if

P(A ∩ B) = P(A) · P(B) .

I If P(B) > 0, then the conditional probability of A, given B is

P(A|B) =
P(A ∩ B)

P(B)
.

Example (probability space: dice)
P(Aodd|A≤4) = 1/2, but P(Aodd|A≤3) = 2/3



Independence of dyads in random graph models.

A dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

I If Ge1 and Ge2 are independent, we say that
“the dyads e1 and e2 are independent”



Example: two random graph models revisited.

Let G be the set of undirected, loopless graphs G = (V ,E) with
V = {1,2,3}.

Let P1(G) = 1/8. It is for two different dyads e1 and e2

P1(Ge1 ∩ Ge2) = 1/4 = 1/2 · 1/2 = P1(Ge1) · P1(Ge2)

Let

P2(G) =

{
1/2 if E = ∅ or E = D;
0 else.

It is for two different dyads e1 and e2

P2(Ge1 ∩ Ge2) = 1/2 6= 1/2 · 1/2 = P2(Ge1) · P2(Ge2)



Structural balance theory (illustrating dependence).
Structural balance theory (Heider 1946) applies to triplets of
3 actors mutually connected by positive or negative ties:

balanced not balanced

SBT claims that actors prefer balanced networks.

In an appropriate random graph model, it holds that
I all dyads are pairwise independent;
I every dyad depends on the two others (i. e., there is a

higher-order dependence).
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Structural balance theory (Heider 1946) applies to triplets of
3 actors mutually connected by positive or negative ties:

balanced not balanced

SBT claims that actors prefer balanced networks.

In an appropriate random graph model, it holds that
I all dyads are pairwise independent;
I every dyad depends on the two others (i. e., there is a

higher-order dependence).



Fully independent random graph models.

Recall: a dyad e ∈ D is associated with a subset of graphs

Ge = {G ∈ G ; e ∈ EG} .

Recall: if Ge1 and Ge2 are independent, we say that “the dyads
e1 and e2 are independent”

Definition
Let D′ ⊂ D. A dyad e ∈ D \ D′ is said to be independent of D′ if
for all partitions D′ = D+ ∪ D−, the subset Ge is independent of

GD+∪D− = {G ∈ G ; D+ ⊆ EG and D− ∩ EG = ∅} .

If every dyad e is independent of every subset D′ ⊆ D \ {e},
then we say that the random graph model is fully independent.
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Definition
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A fully independent random graph model is
determined by the edge probabilities of all dyads.

Let (G,P) be a fully independent random graph model.
Then the probability of a graph G = (V ,E) ∈ G is

P(G) = P({G})

= P

⋂
d∈E

Gd ∩
⋂

d∈D\E

Gd


=

∏
d∈E

P(Gd ) ·
∏

d∈D\E

P(Gd )

=
∏
d∈E

P(d ∈ E) ·
∏

d∈D\E

1− P(d ∈ E) .



Expected values in a random graph model.

Random graph models can be characterized by the expected
values of certain random variables.

For instance, expected number of edges, triangles, nodes of
certain degrees, . . .



Background: random variable and expectation.

Let (Ω,P) be a finite probability space.

Definition
A random variable is a function X : Ω→ R.

Let S = X (Ω) be the set of values of X .

The expectation of the random variable X is defined by

E(X ) =
∑
x∈S

x · P(X = x) =
∑
ω∈Ω

X (ω) · P(ω) .

Example
The prize assigned to lottery numbers is a random variable.
Its expectation is the average gain that could be expected after
“many” lottery draws (to be compared with the cost of a ticket).



Background: random variable and expectation.

Let (Ω,P) be a finite probability space.

Definition
A random variable is a function X : Ω→ R.

Let S = X (Ω) be the set of values of X .

The expectation of the random variable X is defined by

E(X ) =
∑
x∈S

x · P(X = x) =
∑
ω∈Ω

X (ω) · P(ω) .

Example
The prize assigned to lottery numbers is a random variable.
Its expectation is the average gain that could be expected after
“many” lottery draws (to be compared with the cost of a ticket).



Background: linearity of expectation.

E(X ) =
∑
ω∈Ω

P(ω) · X (ω) .

Lemma
If X ,Y : Ω→ R are two random variables and α a real number,
then it is

E(X + Y ) = E(X ) + E(Y )

E(α · X ) = α · E(X ) .



Example: expected number of edges in a random
graph model.

Claim
The expected number of edges equals the sum of the
edge-probabilities over all dyads.

Proof.
The number of edges of a graph G can be written as

m(G) =
∑
e∈D

χe(G)



Example: expected number of edges in a random
graph model.

Claim
The expected number of edges equals the sum of the
edge-probabilities over all dyads.

Proof.
The number of edges of a graph G can be written as

m(G) =
∑
e∈D

χe(G)

where χe : G → {0,1} is defined by

χe(G) =

{
1 if e ∈ EG
0 else.
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edge-probabilities over all dyads.

Proof.
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Example: expected number of edges in a random
graph model.

Claim
The expected number of edges equals the sum of the
edge-probabilities over all dyads.

Proof.
The number of edges of a graph G can be written as

m(G) =
∑
e∈D

χe(G)

From the linearity of the expectation it follows that

E[m] =
∑
e∈D

E[χe] =
∑
e∈D

P(e ∈ E) · 1 + P(e 6∈ E) · 0

=
∑
e∈D

P(e ∈ E)



Uniform graph model: edge probability.
Claim
The edge probability of a dyad e ∈ D in the uniform random
graph model is equal to 1/2. Thus, the expected number of
edges is |D|/2.

Proof.
The two sets

Ge = {G ∈ G ; e ∈ EG},
Ge = {G ∈ G ; e 6∈ EG}

I have the same cardinality⇒ P(Ge) = P(Ge),
I are disjoint⇒ P(Ge) + P(Ge) = P(Ge ∪ Ge),
I and their union equals G ⇒ P(Ge ∪ Ge) = 1.
⇒ P(Ge) = 1/2.
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Uniform graph model: independence.

Claim
The edge probability of a dyad e ∈ D in the uniform random
graph model is 1/2, independent of all sets of dyads.

Proof.
Let D+,D− ⊆ D \ {e} be two disjoint subsets of dyads, not
containing e. Consider

G′ = {G ∈ G ; D+ ⊆ EG, and D− ∩ EG = ∅} .

Then, with G′e = {G ∈ G′ ; e ∈ EG} it follows P(G′e|G′) = 1/2 (as
on the previous slide).
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Random graph models: summary.

A random graph model
I assigns probabilities to entire graphs (rather than to

individual edges);
I implies edge probabilities (but is not determined by them).

Dependency among dyads (or higher-order structures)
I is what makes network modeling difficult;
I is what makes network modeling interesting;
I is often the essence of social network theories.
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Definition of G(n,p).
Let n ∈ N≥1 and p be a real number 0 < p < 1.

G(n,p) is the random graph model on the set of undirected,
loopless graphs with vertex set V = {1, . . . ,n} that defines the
probability of a graph G with m edges by

P(G) = pm(1− p)
n(n−1)

2 −m .

Note: P is normalized since (let M = n(n − 1)/2)

∑
G∈G

P(G) =
M∑

m=0

(
M
m

)
pm(1− p)M−m

= (p + (1− p))M = 1M = 1 .

Remark
The uniform random graph model is identical with G(n, 1

2).
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Characterizing properties of G(n,p).

The probability of a graph G with m edges is defined by

P(G) = pm(1− p)
n(n−1)

2 −m .

Claim

1. The edge probability of every dyad is equal to p.
2. The model is fully independent.
3. There is just one model satisfying properties (1) and (2).

Proof.
See next exercise sheet.



Further properties of G(n,p).

I Expected number of edges is p n(n−1)
2 .

I Expected density is p.
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Sampling from G(n,p).

Task: design of a probabilistic algorithm returning graphs with
probability as in G(n,p).

Want to do so efficiently⇒ ability to sample for large n.



Sampling from G(n,p).

Task: design of a probabilistic algorithm returning graphs with
probability as in G(n,p).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Runtime is in Θ(n2) (independent of p)
⇒ inefficient for small p (i. e., sparse graphs).

The expected size of a graph from G(n,p) is in Θ(n + p · n2).

Observation: density p of social networks typically decreases
with growing n, for instance, p ∈ O(1/n).
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Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

enumerate dyads
d1

d2 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)
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Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d1 an edge?
(draw a random number. . . )

d1?
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d7 d8 d9 d10

inefficient, when p is small (too many NOs)
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Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d2 an edge?
(draw a random number. . . )
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d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d2 an edge?
→ YES (for instance)
⇒ turn d2 into the first edge

d1

e1 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d3 an edge?
(draw a random number. . . )
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d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)
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I draw a uniformly distributed random number r ∈ [0,1];
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Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

go on . . . d1

e1 d3

d4 d5 d6

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d6 an edge?
(draw a random number. . . )

d1

e1 d3

d4 d5 d6?

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

Is d6 an edge?
→ YES (for instance)
⇒ turn d6 into the second edge
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d4 d5 e2

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

to be continued . . .
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e1 d3

d4 d5 e2

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Generating graphs from G(n,p) (illustration).

Simple algorithm: iterate over all dyads e ∈ D
I draw a uniformly distributed random number r ∈ [0,1];
I if r ≤ p add e to the edge set.

to be continued . . .
d1

e1 d3

d4 d5 e2

d7 d8 d9 d10

inefficient, when p is small (too many NOs)



Sampling efficiently from G(n,p).
Better ask the question:

How many dyads shall be left out before the next
edge?

⇒ need only Θ(m) questions.

Randomly draw the number k of non-edges . . .

draw k = 1⇒ leave out one
dyad; turn the second dyad into
the first edge

draw k = 3⇒ leave out the
next three dyads (d3, d4, d5);
turn d6 into the second edge

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10
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Sampling efficiently from G(n,p).
How many dyads shall be left out?

(Notation: q = 1− p in the following.)

Observation: the next dyad that becomes an edge is preceded
by exactly k non-edges with probability qkp.

⇒ randomly draw number k of
non-edges (out of 0,1, . . . ) with
probability qkp and add the
k + 1th dyad to the edge set.

draw k = 1 (happens with
probability qp)

draw k = 3 (happens with
probability q3p)

d1

d2 d3

d4 d5 d6

d7 d8 d9 d10
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Background: geometric distribution.

The distribution that assigns the probability P(k) = p · (1− p)k

to the non-negative integers k = 0,1,2, . . . is called the
geometric distribution.

Such a random number generator is implemented in R
(function rgeom).

Equivalent: draw a uniformly distributed real number r from
(0,1) and return

k =

⌊
log(r)

log(1− p)

⌋



Sampling efficiently from G(n,p) (pseudocode).

E ← ∅
v ← 1 w ← −1
while v < n do

k ← rgeom(p)
w ← w + k + 1
while w ≥ v and v < n do

w ← w − v
v ← v + 1

if v < n then
E ← E ∪ {{v ,w}}

return G = ({0, . . . ,n − 1},E)

0

v w

n − 1

0 n − 1

If w ≥ v then w is reduced by v and the row index v is
incremented by one.
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Sampling efficiently from G(n,p) (runtime).

E ← ∅
v ← 1 w ← −1
while v < n do

k ← rgeom(p)
w ← w + k + 1
while w ≥ v and v < n do

w ← w − v
v ← v + 1

if v < n then
E ← E ∪ {{v ,w}}

return G = (V ,E)

Outer while loop is executed
m + 1 times (m is the number
of edges of G).

Inner while loop is executed
(in total) n − 1 times.

⇒ runtime in Θ(m + n).



Efficient sampling from G(n,p) (correctness).

Let G be a graph with m edges; compute probability that G is
returned by the sampling algorithm.

For i = 1, . . . ,m + 1 let ki be number of non-edges between
(i − 1)th and i th edge.

Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
2. For i = m + 1 the random number k in the m + 1th iteration

satisfies k ≥ km+1.
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Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
Happens with probability pqki .

2. For i = m + 1 the random number k in the m + 1th iteration
satisfies k ≥ km+1.
Happens with probability qkm+1 .
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Efficient sampling from G(n,p) (correctness).

Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
Happens with probability pqki .

2. For i = m + 1 the random number k in the m + 1th iteration
satisfies k ≥ km+1.
Happens with probability qkm+1 .

∞∑
j=km+1

pqj =
∞∑

j=0

pqj −
km+1−1∑

j=0

pqj = 1− (1− qkm+1) = qkm+1 .



Efficient sampling from G(n,p) (correctness).

Algorithm returns G if and only if
1. For all i = 1, . . . ,m, the random number k in the i th

iteration satisfies k = ki .
Happens with probability pqki .

2. For i = m + 1 the random number k in the m + 1th iteration
satisfies k ≥ km+1.
Happens with probability qkm+1 .

All conditions for i = 1, . . . ,m + 1 are satisfied with probability

qkm+1

m∏
i=1

pqki = pmq
∑m+1

i=1 ki = pmq
n(n−1)

2 −m .
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Can such a network be drawn from a G(n,p) model?

Graph has 769 vertices and about 16 600 edges.

Which G(n,p)?
What is the most likely value for the parameter p?
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Which G(n,p)?
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Background: maximum likelihood.

Problem: given a graph G drawn from some parameterized
random graph model (without knowing the parameter value).

What is the most likely parameter value?

Definition (maximum likelihood)
(G,Pθ) random graph model parameterized by θ ∈ Θ ⊆ Rk ;
Gobs ∈ G a graph (observation).
Likelihood function associated with Gobs

L : Θ→ R; θ 7→ Pθ(Gobs)

A parameter vector θ̂ maximizing L, i. e.,

θ̂ = arg max
θ

L(θ)

is called a maximum likelihood estimate (MLE) for θ.



Background: maximum likelihood.

Problem: given a graph G drawn from some parameterized
random graph model (without knowing the parameter value).

What is the most likely parameter value?

Definition (maximum likelihood)
(G,Pθ) random graph model parameterized by θ ∈ Θ ⊆ Rk ;
Gobs ∈ G a graph (observation).
Likelihood function associated with Gobs

L : Θ→ R; θ 7→ Pθ(Gobs)

A parameter vector θ̂ maximizing L, i. e.,

θ̂ = arg max
θ

L(θ)

is called a maximum likelihood estimate (MLE) for θ.



Maximum likelihood estimate of p in G(n,p).

Assume that Gobs has exactly m edges; let M = n(n−1)
2 .

L(p) = Pp(Gobs) = pm(1− p)M−m .

L′(p) = m · pm−1 · (1− p)M−m − pm · (M −m) · (1− p)M−m−1 .

Setting L′(p) = 0 for 0 < p < 1 yields

m · pm−1 · (1− p)M−m = pm · (M −m) · (1− p)M−m−1

m · (1− p) = p · (M −m)

m − pm = pM − pm
m
M

= p

L(p) indeed assumes a maximum at p̂ := m
M since [. . . ].



Both graphs have 769 vertices and about 16 600 edges.

Maximum likelihood estimate for p is 0.056

Which graph is more likely drawn from a G(n,p) model?

Both graphs have the same (very small) probability in G(n,p)
⇒ the probability of the graph is not a good criterion.



Both graphs have 769 vertices and about 16 600 edges.

Maximum likelihood estimate for p is 0.056

Which graph is more likely drawn from a G(n,p) model?

Both graphs have the same (very small) probability in G(n,p)
⇒ the probability of the graph is not a good criterion.



Which graph is drawn from a G(n,p) model?

Address this question by looking at some network properties:
1. inhomogeneity of the graph density;
2. skewness of the degree distribution;
3. number of triangles.



Inhomogeneity of the graph density.

Colors encode the dorm variable (gray for missing value).



Inhomogeneity of the graph density.

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.

Can this happen in a G(n,p) model?

Probably not: probability that randomly drawn subnetworks of
that size have such high density is very small.



Inhomogeneity of the graph density.

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.

Can this happen in a G(n,p) model?

Probably not: probability that randomly drawn subnetworks of
that size have such high density is very small.



Which graph is drawn from a G(n,p) model?

Comparing degree distributions.



Which graph is drawn from a G(n,p) model?

Plotting number of vertices (y -axis) with given degree (x-axis).
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Probability of degree k in G(n,p).

Lemma
Let v ∈ {1, . . . ,n} be any vertex. The probability that v has
degree equal to k ∈ {0, . . . ,n − 1} in a graph drawn from
G(n,p) is

P(d(v) = k) =

(
n − 1

k

)
· pkqn−1−k

Proof.
There are exactly

(n−1
k

)
different neighborhoods of v that have

cardinality k . Each of them has probability pkqn−1−k .

q = 1− p



Probability of degree k in G(n,p).

Lemma
Let v ∈ {1, . . . ,n} be any vertex. The probability that v has
degree equal to k ∈ {0, . . . ,n − 1} in a graph drawn from
G(n,p) is

P(d(v) = k) =

(
n − 1

k

)
· pkqn−1−k

Proof.
There are exactly

(n−1
k

)
different neighborhoods of v that have

cardinality k . Each of them has probability pkqn−1−k .

q = 1− p



P[d(v) = k ] =

(
n − 1

k

)
· pkqn−1−k
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Degree distribution in G(n,p) (limit n→∞).

Theorem
Let λ ∈ R>0, pn := λ/(n − 1) a sequence of edge probabilities,
defined for n ≥ λ+ 1,
k ∈ N0, Pn[d(v) = k ] probability that d(v) = k in G(n,pn) for
fixed v.

Then it is

lim
n→∞

Pn[d(v) = k ] = e−λ · λ
k

k !
.

(Is called Poisson distribution.)



Degree distribution in G(n,p) for large n.
Degree distribution of a graph drawn from G(n,p) with n = 107

and p = 10/(n − 1); maximum observed degree is 30.
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Which graph is drawn from a G(n,p) model?

Comparing number of triangles.

expected: 13,000 observed: 119,000



Which graph is drawn from a G(n,p) model?

Address this question by looking at some network properties:
1. inhomogeneity of the graph density;
2. skewness of the degree distribution;
3. number of triangles.

All three properties are very different for the small facebook
network than for the G(n,p) model.
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Two simple approaches to define more structured models.

1. Planted partition models: allow varying probability
between different vertices (but keeping independence as in
the G(n,p) model).

2. Incrementally defined models: nodes and edges are
incrementally added to the network; probability of later
edges may depend on earlier ones.
Example: preferential attachment.



Outline.
Introduction.
Running example: data, questions, and simple answers.
Random graph models.
G(n,p).

Definition of G(n,p).
Sampling from G(n,p).
Plausibility of G(n,p) as a model for social networks.

Towards more structured models.
Planted partition models.
Preferential attachment.

Exponential random graph models.
Definition and examples.
Sampling from an ERGM.
Hypothesis testing and parameter estimation.
Near-degeneracy and multi-modality of ERGMs.
Hammersley-Clifford Theorem.
Miscellaneous.



Recall: inhomogeneity of the graph density

Density of the whole network is 0.056

The subnetworks induced by the eight dorms have much higher
densities, namely: 0.21, 0.37, 0.20, 0.35, 0.31, 0.24, 0.37, 0.25.



Planted partition models.

Definition
A planted partition model is defined by

I A partition of the vertex set V = V1 ∪ · · · ∪ Vk into k disjoint
classes.

I Probabilities pij ∈ (0,1) associated with each unordered
pair of classes Vi and Vj .

I Two vertices u ∈ Vi and v ∈ Vj are connected by an edge
with probability pij .

I The model is fully independent.



Planted partition models.

Vertex partition induces a partition of the adjacency matrix into
blocks.

p1 · · · p1
...

...
p1 · · · p1

p2 · · · p2
...

...
p2 · · · p2

p3 · · · p3
...

...
p3 · · · p3

p2 · · · p2
...

...
p2 · · · p2

p4 · · · p4
...

...
p4 · · · p4

p5 · · · p5
...

...
p5 · · · p5

p3 · · · p3
...

...
p3 · · · p3

p5 · · · p5
...

...
p5 · · · p5

p6 · · · p6
...

...
p6 · · · p6


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Recall: degree distributions.

sampled from G(n,p)
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Other empirical dist. (Barabasi and Albert, 1999).

Note: logarithmic scaling of axes.

A Actor collaboration network n = 212,250 and d = 28.78
B WWW n = 325,729 and d = 5.46
C Power grid n = 4,941 and d = 2.67



Preferential attachment: motivation and history.

Empirical observation: often a few nodes have very high
degrees; degree-distribution resembles a power-law:

P(d(v) = k) ≈ c · 1
kγ
⇔ log P(d(v) = k) ≈ c′ − γ · log k

Model idea (Barabási and Albert, 1999):
1. vertices are successively added to the network;
2. new vertices create a fixed number of edges to already

existing vertices;
3. probability of edge to vertex v is proportional to v ’s degree.

Interpretation high-degree vertices are more popular.

Experimental evidence for power-law distribution with γ ≈ 3.
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Preferential attachment model.

Definition (Bollobás, Riordan, Spencer, and Tusnády)
Directed multi-graphs, including loops, with n ≥ 1 vertices and
constant outdegree equal to b ≥ 1.

Iterative definition:
start with empty graph G = (V ,E), V = E = ∅

foreach v = 0, . . . ,n − 1 do
put v into V
foreach j = 0, . . . ,b − 1 do

attach an outgoing edge e = (v , ·) to v ;
randomly select target w of e with probability

dG(w)∑
w ′∈V dG(w ′)

;

put e = (v ,w) into E ;



Preferential attachment model.

Definition (Bollobás, Riordan, Spencer, and Tusnády)
Directed multi-graphs, including loops, with n ≥ 1 vertices and
constant outdegree equal to b ≥ 1.

Iterative definition:
start with empty graph G = (V ,E), V = E = ∅

foreach v = 0, . . . ,n − 1 do
put v into V
foreach j = 0, . . . ,b − 1 do

attach an outgoing edge e = (v , ·) to v ;
randomly select target w of e with probability
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Preferential attachment (algorithm).
uses: uniform random sampling of integer from {0, . . . , k}

input : number of nodes n ∈ N≥1, out-degree b ∈ N≥1
data : array A[0 . . . 2nb − 1] //collects endpoints of edges
output
:

multi-graph G = ({0, . . . ,n − 1},E)

E ← ∅; m← 0 //edge set and edge counter

foreach v = 0, . . . ,n − 1 do
foreach j = 0, . . . ,b − 1 do

A[2m]← v //v is source of next edge
w ← A[random({0, . . . ,2m})] //randomly select target
A[2m + 1]← w ; //put target in A
E ← E ∪ {(v ,w)}; m← m + 1 //update edges

Note: number of occurences of v in A equals degree of v
⇒ target node gets selected with the correct probability.



Some remarks.

It is relatively easy to define a simple model that reproduces a
given property of empirical social networks.

But different properties might be interrelated:

For instance, a planted partition model with dense diagonal
blocks yields more triangles than a G(n,p) model with the same
global density.

Difficulty lies in assessing some network property while
controlling for others.

In incrementally defined models we made an arbitrary choice
when ordering nodes.
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Exponential random graph models (informal).

Exponential random graph models (ERGMs) are a class of
random graph models.

Graph probability is a function of two components:
1. A set of network characteristics (statistics) that may have

an influence on the probability of a graph.
2. A set of parameters (associated with statistics) that

determine how network statistics increase or decrease the
probabilities of graphs.

Choice of statistics often motivated by social science theory.

Parameters can be estimated from an observed network to test
hypotheses.



Exponential random graph models (ERGM).

Definition
The ERGM class consists of random graph models (G,Pθ)
whose probability function Pθ can be written as

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G)

)

with
I si : G → R for i = 1, . . . , k (statistics);
I θi ∈ R for i = 1, . . . , k (parameters); θ = (θ1, . . . , θk );
I normalizing constant κ defined by

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · si(G′)

)
.



ERGM (example).

Consider undirected, loopless graphs with 3 vertices.

P(G) =
1
κ

exp [− log(2) ·m(G) + log(16) · triangles(G)]

m(G) 0 1 2 3

triangles(G) 0 0 0 1

P(G) · κ 1 1
2

1
22

16
23

# isomorphic graphs 1 3 3 1

⇒ κ = 1 + 3 · 1/2 + 3 · 1/4 + 2 = 21/4



Relation between statistics and probability.

Probability of a graph G

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G)

)
.

What happens if one single statistic si0 changes?

Pθ(G) = exp[θi0 · si0(G)] · 1
κ(θ)

exp

∑
i 6=i0

θi · si(G)

 .

If si0(G′) = si0(G) + c and si(G′) = si(G) for all i 6= i0,
then P(G′) = exp(θi0)c · P(G).

It is exp(θi0) > 1⇔ θi0 > 0 and exp(θi0) < 1⇔ θi0 < 0.
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Relation between statistics and probability.

Let e ∈ D be a dyad and G = (V ,E) ∈ G be a graph.
Define G(+e) = (V ,E ∪ {e}) and G(−e) = (V ,E \ {e}).

Define the change statistic by

∆s(e; G) = [s1(G(+e))− s1(G(−e)), . . . , sk (G(+e))− sk (G(−e))] .

Then, it is Pθ(G(+e))

Pθ(G(−e))
= exp(θ ·∆s(e; G)).

1

2

3

4 Note: probability-ratio
depends on e and G.

Example: s1(G) = m(G) and
s2(G) = triangle(G).

Dyad {1,3} has a different change statistic than {1,4}.



Example: G(n,p) belongs to the ERGM class.

Lemma
G(n,p) is identical with the ERGM defined by

P1(G) = exp [θ ·m(G)] · κ(θ)−1

where θ = log
(

p
1−p

)
.

Proof.
Let P2 denote the probability function of the G(n,p) model.

P2(G) = pm(G) · (1− p)(n
2)−m(G)

=

(
p

1− p

)m(G)

· (1− p)(n
2)

= exp [θ ·m(G)] · (1− p)(n
2)

Thus, P2 = c · P1 for a constant c;⇒ c = 1.
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Interpretation of θ = log
(
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1−p

)
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Relation between θ and p
I θ < 0⇐⇒ expected density p < 1/2;
I θ = 0⇐⇒ expected density p = 1/2;
I θ > 0⇐⇒ expected density p > 1/2.

Does not hold in general (if the ERGM contains other statistics).
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Commonly used network statistics.

Commonly used statistics s count the number of specific
subgraphs in the network.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G)

)

If a subgraph count is associated with a positive (negative)
parameter, then those subgraphs become more (less) frequent.



Commonly used network statistics (I).

Statistic m(G) counts the number of edges.

m(V ,E) = |E | .

A positive (negative) parameter associated with m(G)
increases (decreases) the expected density.



Commonly used network statistics (II).
Assume that actors have attribute values a : V → {1, . . . , c},
such as age, gender, nationality, religion, . . . .

Let statistic

ma(G) = |{{u, v} ∈ E ; a(u) = a(v)}|

count the number of edges connecting actors with the same
attribute value.

A positive (negative) parameter associated with ma(G) models
tendency for (against) creating edges to similar actors
homophily (heterophily).



Commonly used network statistics (III).
Statistic t(G) counts the number of triangles in G.

t(y) =
∑

u<v<w

yuv · yvw · ywu ; y adjacency matrix of G .

A positive (negative) parameter models a preference
(reluctance) to close triangles (transitivity).

“A friend of a friend is a friend.”

For directed networks: distinguish between transitive triangles
and cyclic triangles.



Commonly used network statistics (IV).
For ` = 2, . . . ,n− 1 statistic s`(G) counts the number of `-stars.

s`(y) =
∑

u

∑
v1<···<v` 6=u

yuv1 · . . . · yuv` .

A positive (negative) parameter models the tendency for
(against) connecting to high-degree vertices.

1

2

3
4

5

Note: a vertex of degree d contributes
(d
`

)
to the `-star count.

For directed networks: distinguish between out-stars and
in-stars.



Commonly used network statistics (V).

For directed graphs, statistic mutual(G) counts the number of
ordered node-pairs (u, v) for which both (u, v) ∈ E and
(v ,u) ∈ E .

mutual(y) =
∑
u 6=v

yuv · yvu

A positive (negative) parameter models the tendency for
(against) reciprocating ties.

u v



Implication on dyad dependency.

Using some statistics makes dyads dependent.

statistic dyads are
number of edges independent

edges connecting same attribute independent

number of triangles dependent

number of `-stars

1

2

3
4

5

dependent
number of mutual ties dependent



Dyad dependency (example).
Consider undirected graphs with 3 vertices; 2-star count s2.

P(G) =
1
κ

exp [log(2) · s2(G)]

s2(G) 0 0 1 3

P(G) · κ 1 1 2 23 = 8

# isomorphic graphs 1 3 3 1

Let e,e′ be two different dyads.

P(Ge|Ge′) = (2 + 8)/(1 + 2 · 2 + 8) = 10/13
P(Ge) = (1 + 2 · 2 + 8)/(1 + 3 · 1 + 3 · 2 + 8) = 13/18

Thus, dyads e and e′ are statistically dependent.



Estimation of ERGM parameters.

Given an observed network Gobs and a set of statistics
si , i = 1, . . . , k .

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G)

)

The maximum likelihood estimate of the parameters is the
vector θ̂ ∈ Rk that maximizes the likelihood function

L : Rk → R; θ 7→ Pθ(Gobs) .

Estimation can be done with the R function ergm.
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Given an ERGM (G,Pθ) with

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G)

)
,

we want to design a probabilitstic algorithm
I returning at each call a graph G from G,
I with probability defined by Pθ(G).



First try: factorize the probability.

Let D = {d1, . . . ,dM} be the set of dyads in an arbitrary but
fixed order.

For a given graph G = (V ,E) let Ei = E ∩ {d1, . . . ,di} and
Ei = {dj ∈ {d1, . . . ,di} ; dj /∈ E}.

For two disjoint subsets E ,E ⊆ D let

GE ,E = {G = (VG,EG) ∈ G ; E ⊆ EG and E ∩ EG = ∅} .

Then, for a given graph G it is

P(G) =
∏

di∈E

P(Gdi |GEi−1,Ei−1
) ·

∏
di∈D\E

1− P(Gdi |GEi−1,Ei−1
)
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Sampling from an ERGM: first try.

For a given graph G it is

P(G) =
∏

di∈E

P(Gdi |GEi−1,Ei−1
) ·

∏
di∈D\E

1− P(Gdi |GEi−1,Ei−1
)

Sample from a given ERGM:

E ← ∅; E ← ∅
for i = 1, . . . ,M do

with probability P(Gdi |GE ,E )
put di into E ;

otherwise
put di into E .

Problem: probabilities are computationally intractable.
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More details: conditional probabilities are
computationally intractable in general.

Probability of a graph G in an ERGM:

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G)

)

Normalizing constant κ cancels out when computing
conditional probabilities

P(Gdi |GEi−1,Ei−1
) .

But there are M − i + 1 unconstrained dyads in GEi−1,Ei−1
.

Computationally intractable, unless M − i + 1 is very small; that
is, if i is almost as large as M.



Sampling from an ERGM: second try.

For a given graph G = (V ,E) and a dyad d define

G[G,−d ] = {(V ,E \ {d}), (V ,E ∪ {d})} ,

(this is the set of two graphs that are identical with G on all
dyads except d).

Sample from a given ERGM:

E ← ∅
for i = 1, . . . ,M do

with probability P(Gdi |G[(V ,E),−di ])
put di into E ;

otherwise
remove di from E (i. e., do nothing).

Problem: graphs are not returned with the correct probabilities.
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Sampling from an ERGM: yet another try.

Sample from a given ERGM:

start with some arbitrary graph (V ,E)
for some number of steps T do

draw a random dyad d ∈ D
with probability P(Gd |G[(V ,E),−d ])

put d into E ;
otherwise

remove d from E .

Fact: graphs are still not returned with the correct probabilities.

But probability converges to the correct probability when
T →∞.

That’s what we are going to show in this section.
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Giving it a different name: Markov chain simulation.
Informally, a Markov chain consists of a set of states and
transition probabilities to jump from one state to another.

Here, given an ERGM (G,P)

I the set of states is G (all graphs);
I transition probabilities π are a function of P
I in such a way that

I the probability to be on graph G converges to P(G),
when the number of simulation steps tends to∞.

⇒ Simulate many steps and return the current graph.

G1 G2 G3

G4 G5 . . .

π12, π21

π14
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Finite stationary Markov chain (simplified definition).
Note: Markov chains are usually defined as random processes
that satisfy certain properties. The following is a more intuitive
definition for stationary Markov chains.

Definition
A (finite stationary) Markov chain is a pair (G, π), where

I G is a finite set G = {G1, . . . ,GN} (state space);
I π is a matrix π ∈ RN×N (transition matrix) satisfying

I for all i , j it is πij ∈ [0,1];
I for all i it is

∑N
j=1 πij = 1.

πij interpreted as the probability to jump from state Gi to Gj .

G1 G2 G3

G4 G5 . . .

π12

π14
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How to define the transition probabilities.

Goal: given an ERGM (G,P)

I define transition probabilities π on the set of graphs G in
such a way that the probability to be on a graph G
converges to P(G), when the number of simulation steps
tends to∞.



An important observation.
πij interpreted as the probability to jump from state Gi to Gj

P(G1) P(G2) P(G3)

P(G4) P(G5) . . .

π12 π32

π42
π52

If the probability to be on a graph G after t iteration steps is
denoted by P(t)(G), then
(with P(t) = [P(t)(G1), . . . ,P(t)(GN)] ∈ RN ) it is

P(t+1) = P(t)π , (matrix-vector multiplication).

This holds since for any j = 1, . . . ,N it is

P(t+1)(Gj) =
N∑

i=1

P(t)(Gi)πij



Stationary state space distributions.

A probability vector P can only be a limit of the Markov chain if
it is a fix-point of the mapping P 7→ Pπ.

That is, for the desired limit P it must hold

P = Pπ .

Such a P is called a stationary distribution for the Markov chain.



Irreducible and aperiodic Markov chains.
πij interpreted as the probability to jump from state Gi to Gj .

G1 G2 G3

G4 G5 . . .

π12

π14

A sequence of states Gi1 ,Gi2 , . . . ,Gik is called a (directed) path
if for all j = 1, . . . , k − 1 it is πij ij+1 > 0.

Definition
The Markov chain (G, π) is called

I irreducible if for any two states Gi ,Gj ∈ G there is a path
from Gi to Gj ;

I aperiodic if the greatest common divisor of the length of all
cycles (i. e., paths from a state to itself) equals one.
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Theorem
Let P be a probability distribution on G and π be the transition
matrix of a Markov chain on G.
If for all graphs Gi , Gj it is

P(Gi)πij = P(Gj)πji

(Markov chain is then called reversible)
and the Markov chain is irreducible and aperiodic
then P is the unique stationary distribution of the Markov chain
and for any initial distribution P0 it is

lim
K→∞

P0π
K = P .



Gibbs sampling (transition matrix).

Given P, define π such that

P(Gi)πij = P(Gj)πji .

Gibbs sampling: define π as follows
I πij = 0 if Gi and Gj differ in more than one dyad;
I if Gi and Gj differ in exactly one dyad, then

πij =
P(Gj)(n

2

)
(P(Gi) + P(Gj))

.

I πii =
∑ P(Gi )

(n
2)(P(Gi )+P(G))

(sum over all G that differ from Gi in exactly one dyad)

Show: π is normalized, irreducible, aperiodic, reversible.



Gibbs sampling (algorithm).

initialize G by any graph from G;
repeat many times

I select a dyad e uniformly at random;

I with probability P(G(+e))

P(G(+e))+P(G(−e))

I replace G = (V ,E) by G(+e) = (V ,E ∪ {e})
I otherwise replace G = (V ,E) by G(−e) = (V ,E \ {e});

return G;

Note: The probability at each step is just dependent on the
change statistic ∆s(e; G).



Sampling from an ERGM in R.

The function simulate in the ergm package can sample from
an ERGM with given statistics and parameters.

Function gof (goodness-of-fit) compares several statistics of
the observed network with the distribution in a given ERGM
(estimated from sampled networks).
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Recall: maximum likelihood parameters.

Definition (maximum likelihood)
(G,Pθ) random graph model parameterized by θ ∈ Θ ⊆ Rk ;
G∗ ∈ G a graph (observation).
Likelihood function associated with G∗

L : Θ→ R; θ 7→ Pθ(G∗)

A parameter vector θ̂ maximizing L, i. e.,

θ̂ = arg max
θ

L(θ)

is called a maximum likelihood estimate (MLE) for θ.



Testing hypotheses with ERGMs.

To test a hypothesis (e. g., the friend of a friend is a friend) with
observed network data G∗.

I Decide on a reasonable set of statistics si , i = 1, . . . , k

P(G) =
1
κ

exp

(
k∑

i=1

θi · si(G)

)

including a statistic related to the hypothesis,
e. g., sk = number of triangles.

I Compute maximum likelihood estimates θ̂ = (θ̂1, . . . , θ̂k ).
I Check whether θ̂k is significantly positive:

compute probability of observing a network in the null
model defined by (θ̂1, . . . , θ̂k−1,0) that gives rise to θk as
large as θ̂k .



Maximizing the likelihood function

L(θ) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G∗)

)

is computationally intractable (since the normalizing constant κ
has too many terms).

Even though it is analytically simple (formulas for the partial
derivatives of any order can be given).



Partial derivatives of the likelihood function.
Likelihood function

L(θ) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G∗)

)
with

κ(θ) =
∑

G′∈G

exp

(
k∑

i=1

θi · si(G′)

)
.

Log-likelihood function

`(θ) = log(L(θ)) =

(
k∑

i=1

θi · si(G∗)

)
− log(κ(θ)) .

Partial derivative by θj for j = 1, . . . , k

∂

∂θj
`(θ) = sj(G∗)−

1
κ(θ)

·
∑

G′∈G

exp

(
k∑

i=1

θi · si(G′)

)
· sj(G′)

= sj(G∗)− Eθ(sj) .



Maximizing the likelihood function.
Likelihood function

L(θ) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G∗)

)

is maximized by computing θ̂ such that

∂

∂θj
`(θ̂) = sj(G∗)− Eθ̂(sj) = 0, for j = 1, . . . , k .

That is: compute those parameters θ̂ that make the expected
values of all statistics equal to the statistics of the observed
network.

Expected values are computationally intractable as well, but
can be estimated from sampled graphs:

I sample N graphs G1, . . . ,GN from (G,Pθ);
I take s = 1

N ·
∑N

j=1 s(Gj) as an estimate for Eθ(s).



Newton-Raphson method.

Let (G,Pθ) be an ERGM parameterized by θ and G∗ an
observed network. To compute the maximum likelihood
estimates θ̂

1. Choose initial parameter values θ(0) = (θ
(0)
1 , . . . , θ

(0)
k );

2. For i = 0,1, . . . until convergence
2.1 Sample G1, . . . ,GN ∼ (G,Pθ(i) );
2.2 s ← 1

N ·
∑N

j=1 s(Gj );

2.3 C ← 1
N ·
∑N

j=1 s(Gj ) · s(Gj )
T ;

2.4 H ← s · sT − C;
2.5 θ(i+1) ← θ(i) − H−1 · (s(G∗)− s)

The inverse of the matrix H from the last iteration is an estimate
for the covariance matrix. ⇒ yields standard errors

Function ergm in the ergm package estimates parameters
(using a different, more sophisticated method).
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Near-degeneracy and multi-modality of ERGMs.

Many ERGMs give rise to multi-modal probability distributions:
I probability mass centered on a small set of graphs
I other graphs are very unlikely.

For instance, only near-empty or near-complete graphs have a
non-vanishing probability.



Near-degeneracy and multi-modality of ERGMs
An ERGM (G,Pθ) is near-degenerate if it places most of the
probability mass on a small subset of G
Examples

Pθ(G) =
1
κ(θ)

exp (ηm(G) + σ2s2(G)) (η, σ2) = (−2,−0.2)
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Pθ(G) =
1
κ(θ)

exp (ηm(G) + σ2s2(G)) (η, σ2) = (1,0.2)
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Near-degeneracy and multi-modality of ERGMs
An ERGM (G,Pθ) is near-degenerate if it places all the
probability mass on a small subset of G
Examples

Pθ(G) =
1
κ(θ)

exp (ηm(G) + σ2s2(G)) (η, σ2) = (−2,0.4)
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Near-degeneracy and multi-modality of ERGMs.

Consider the following ERGM

P(G) =
1
κ

exp (η ·m(G) + τ · t(G)) with η < 0, τ > 0 .

Then, in very sparse networks
I there are few possibilities to close triangles;
I creation of edges is unlikely;
⇒ very unlikely to leave the set of near-empty graphs.

In contrast, in very dense networks
I an edge can close many triangles (up to n − 2);
I deletion of edges is unlikely;
⇒ very unlikely to leave the set of near-complete graphs.



Near-degeneracy and multi-modality of ERGMs.

Degeneracy is undesirable for two reasons.
1. Convergence of the Markov chain towards the stationary

distribution is very slow.
2. Degenerate models seem to be unreasonable models for

empirical networks.



Avoiding near-degeneracy of ERGMs.
Triangle statistic implies linear marginal effect of closed
triangles:

I closing one triangle contributes τ to the log-probability;
I closing two triangles contributes 2τ . . .

u

v

w1 w2 w3 . . . wk

Geometrically-weighted edgewise shared partner (gwesp)
statistic:

I a k -triangle counts more than a single triangle,
I but less than k -times as much.

Typically leads to less degenerate models.
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Recall: dyad dependency.

Using some statistics makes dyads dependent.

Pθ(G) =
1
κ(θ)

exp

(
k∑

i=1

θi · si(G)

)

statistic dyads are
number of edges independent

edges connecting same attribute independent

number of triangles dependent

number of `-stars

1

2

3
4

5

dependent
number of mutual ties dependent



Conditional independence of edges (informally).

Two dyads d1 and d2 are said to be conditionally independent
(given the rest of the graph) if—under the condition that all
other dyads are fixed—the state of the dyad d2 does not provide
any additional information about the probability P(d1 ∈ E).

d2 d1 d2 d1



Conditional independence of edges.

Let (G,P) be a random graph model where D is the set of
dyads of graphs in G and assume that P(G) > 0 for all G ∈ G.
Let d1,d2 ∈ D be two different dyads.

For a partition D+ ] D− = D \ {d1,d2} of the set of dyads
different from d1 and d2 let the subset GD+,D− be defined by

GD+,D− = {G ∈ G ; D+ ⊆ EG and D− ∩ EG = ∅} .

We say that d1 and d2 are conditionally independent (given the
rest of the graph) if for all partitions D+ ] D− = D \ {d1,d2} it is

P(Gd1 |GD+,D−) = P(Gd1 |GD+,D− ∩ Gd2) .

Informally: if we know the state of all dyads in D \ {d1,d2}, the
state of the dyad d2 does not provide any additional information
about the probability P(d1 ∈ E).



Hammersley-Clifford Theorem; special case.

Theorem (first part)
Let D be a set of dyads and G be the set of all graphs defined
on D. Let (G,P) be a random graph satisfying P(G) > 0 for all
G ∈ G.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A
contains two conditionally independent dyads, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where (1)

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 . (2)



Hammersley-Clifford Theorem; special case.

Theorem (first part)
Let D be a set of dyads and G be the set of all graphs defined
on D. Let (G,P) be a random graph satisfying P(G) > 0 for all
G ∈ G.

There are constants {αA ∈ R ; A ⊆ D}, satisfying αA = 0 if A
contains two conditionally independent dyads, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where (1)

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 . (2)



Hammersley-Clifford Theorem; special case.

Theorem (second part)
Conversely, if the probability P on G is defined by

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 , where

κ =
∑

G′∈G

exp

 ∑
A⊆E(G′)

αA

 ,

then two dyads d1 and d2 are conditionally independent in
(G,P), unless there is a subset A ⊆ D with d1,d2 ∈ A and
αA 6= 0.



Hammersley-Clifford Theorem; special case.

Theorem (second part)
Conversely, if the probability P on G is defined by

P(G) =
1
κ

exp

 ∑
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αA

 , where

κ =
∑
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exp
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A⊆E(G′)

αA

 ,

then two dyads d1 and d2 are conditionally independent in
(G,P), unless there is a subset A ⊆ D with d1,d2 ∈ A and
αA 6= 0.



Conclusion from the Hammersley-Clifford Theorem.

There are constants {αA ∈ R ; A ⊆ D}, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 .

⇒ every random graph (G,P) with P > 0 is an ERGM:

I statistics: for A ⊆ D define sA(G) =

{
1 A ⊆ E(G)

0 else
I parameters: αA

P(G) =
1
κ

exp

∑
A⊆D

αA · sA(G)

 .



Conclusion from the Hammersley-Clifford Theorem.

There are constants {αA ∈ R ; A ⊆ D}, such that

P(G) =
1
κ

exp

 ∑
A⊆E(G)

αA

 .

⇒ every random graph (G,P) with P > 0 is an ERGM:

I statistics: for A ⊆ D define sA(G) =

{
1 A ⊆ E(G)

0 else
I parameters: αA

P(G) =
1
κ

exp

∑
A⊆D

αA · sA(G)

 .



Markov random graphs.

Definition
Markov random graphs are a class of random graph models
satisfying (1) the probability of every graph is positive and
(2) for every set of four pairwise different vertices {i , j ,u, v}
the dyads {i , j} and {u, v} are conditionally independent, given
the rest of the graph.

Example
{i , j} and {u, v} conditionally
independent;

{i , j} and {j ,u} might be
conditionally dependent; I

J

U

V

Markov graphs are a specific subclass of the ERGM class.



Dependence graph (of a random graph model).

Definition
Let (G,P) be a random graph model and let D be the set of
dyads of graphs in G.
The dependence graph D = (D,E) of (G,P) has vertex set D,
{di ,dj} ∈ E if di and dj are not conditionally independent, given
the rest of the graph.

Example
the dependence graph of a
Markov graph on vertices
V = {1,2,3,4} is

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

A subset A ⊆ D is a clique in the dependence graph if A does
not contain two conditionally independent dyads.



Cliques in the dependence graph of a Markov graph.

Markov random graphs: edges {i , j} and {u, v} are
conditionally independent, unless they have a vertex in
common.

Cliques in the dependence graph of a Markov graph are

edges

triangles

`-stars, for ` = 2, . . . ,n − 1

1

2

3
4

5

No other subgraphs are cliques in the dependence graph.



ERGM of general Markov graphs.

Corollary
Let (G,P) be a Markov random graph on vertices
V = {1, . . . ,n}. Then there are real constants

ηuv for all dyads {u, v}
τuvw for all triangles {u, v ,w}

σuv1...v` for all 2 ≤ ` ≤ n − 1, and all
`-stars (u, {v1, . . . , v`})

such that the probability of a graph G ∈ G can be written as

P(G) =
1
κ

exp

 ∑
uv∈E(G)

ηuv +
∑

uvw∈T (G)

τuvw +
n−1∑
`=2

∑
uv1...v`∈S`(G)

σuv1...v`





ERGM of general Markov graphs (remarks).

P(G) =
1
κ

exp

 ∑
uv∈E(G)

ηuv +
∑

uvw∈T (G)

τuvw +
n−1∑
`=2

∑
uv1...v`∈S`(G)

σuv1...v`


Each dyad, triangle, `-star can contribute differently to the
probability of a graph.

⇒ unreasonably high number of parameters.



Homogeneous random graph model.

Two graphs G = (V ,E) and H = (W ,F ) are called isomorphic
if there is a bijection ϕ : V →W such that

∀u, v ∈ V : {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ F .

Definition
A random graph model (G,P) is called homogeneous if for any
pair of isomorphic graphs G and H it is P(G) = P(H).



ERGM of homogeneous Markov graphs.

Corollary
Let (G,P) be a homogeneous Markov random graph. Then
there are real constants η, τ , and σ` for ` = 2, . . . ,n − 1 such
that the probability of a graph G ∈ G can be written as

P(G) =
1
κ

exp

(
η ·m(G) + τ · t(G) +

n−1∑
`=2

σ` · s`(G)

)

Proof.
Start from the ERGM of a general Markov graph.
Show that any two edge parameters are equal. . .
For ` = 2, . . . ,n − 1, show that any two `-star parameters are
equal. . .
Show that any two triangle parameters are equal. . .



ERGM of homogeneous Markov graphs.

Corollary
Let (G,P) be a homogeneous Markov random graph. Then
there are real constants η, τ , and σ` for ` = 2, . . . ,n − 1 such
that the probability of a graph G ∈ G can be written as

P(G) =
1
κ

exp

(
η ·m(G) + τ · t(G) +

n−1∑
`=2

σ` · s`(G)

)

Proof.
Start from the ERGM of a general Markov graph.
Show that any two edge parameters are equal. . .
For ` = 2, . . . ,n − 1, show that any two `-star parameters are
equal. . .
Show that any two triangle parameters are equal. . .



ERGMs of fully independent models.

The dependence graph of a fully independent model has no
edges. Thus, the only cliques are single dyads and

P(G) =
1
κ

exp

 ∑
uv∈E(G)

ηuv

 ,

for constants ηuv associated with dyads uv ∈ D.

G(n,p) is a homogeneous fully independent model. Thus,

P(G) =
1
κ

exp (η ·m(G)) .
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Estimating parameters from several observed networks.



ERGM of a family of networks.

Suppose you have observed N > 1 networks G1, . . . ,GN
(for instance, friendship networks in N school classes).

If you can assume that
1. the networks are independent draws
2. from an identical ERGM (meaning: same graphspace,

same statistics, and same parameters)
then everything is fine!

To estimate maximum likelihood parameters θ̂
I the expected statistics Eθ̂(s) must be equal to the average

observed statistics of the N networks
⇒ use the target.stats argument of ergm.

I Divide the standard errors by
√

N.

Similar: time-homogeneous TERGM (note: N = T − 1).



What if assumptions are unrealistic?

Suppose you have observed N > 1 networks G1, . . . ,GN .
1. The networks are independent draws
2. from an identical ERGM.

If the above assumptions are cannot be made, different
approaches might be chosen.

1. If dependencies across networks cannot be excluded,
put the N adjacency matrices in the diagonal blocks of a
joint adjacency matrix;
use appropriate cross-network statistics.

2. Methods to model variation of parameters across networks
exist (beyond the scope of this lecture).



Maximum pseudolikelihood estimation.

(Faster computation of the wrong parameter estimates.)



Pseudolikelihood.

Let Pθ be the probability of an ERGM on G, let d ∈ D be a dyad
and G = (V ,E) ∈ G be a graph.
Define G(+d) = (V ,E ∪ {d}) and G(−d) = (V ,E \ {d}) and

G[G,−d ] = {G(+d),G(−d)} ,

(this is the set of two graphs that are identical with G on all
dyads except d).

The pseudolikelihood associated with an observation
G∗ = (V ,E) is

L(pseudo)
G∗ (θ) =

∏
d∈E

Pθ(Gd |G[G∗,−d ])·
∏

d∈D\E

1−Pθ(Gd |G[G∗,−d ]) .

Note that the associated “probability” is not a proper probability
on G.



Interpreting pseudolikelihood.

The pseudolikelihood “probability” of a graph G = (V ,E)

P(pseudo)
θ (G) =

∏
d∈E

Pθ(Gd |G[G,−d ])·
∏

d∈D\E

1−Pθ(Gd |G[G,−d ]) ,

I pretends that the graph G is the result of independent
decisions for all dyads d ∈ D.

I When deciding about whether d ∈ E we fix all other dyads
to their value (edge or non-edge) in G.

I Dyad d is turned into an edge with the conditional
probability Pθ(Gd |G[G,−d ]).

Note that this process to draw a graph is not well-defined, since
we need to know G[G,−d ]) before we know it.



Summary of pseudolikelihood estimation.

Pseudolikelihood estimation of ERGMs is logistic regression
where

I the binary outcome variables are the dyads d ∈ D for
which either d ∈ E (variable equal to 1) or d 6∈ E (variable
equal to 0);

I the explanatory variables for the dyads d ∈ D are the k
change statistics

∆s(d ; G) = [s1(G(+d))−s1(G(−d)), . . . , sk (G(+d))−sk (G(−d))] ,

associated with the observed graph G.



Remarks about pseudolikelihood.

Pseudolikelihood estimation has the following properties.
I It is fast and does not lead to degenerate models.
I Results suggest that parameters from pseudolikelyhood

converge to the MLE parameters when the network size
increases.

I Results suggest that standard errors are likely to be too
small.
That is, the null-hypothesis is rejected too often.
That is, you might think you’ve found a significant effect
when in reality there is none.

I You cannot use such a pseudolikelihood model to sample
a graph from scratch because the explanatory variables
can only be computed once you have a graph.



Bootstrap sampling of confidence intervals.

(Correcting the damage done by pseudolikelihood estimation.)



Bootstrap sampling of confidence intervals: idea.

Situation: have N graphs assumed to be drawn from one
ERGM and want to estimate parameters and their standard
errors.

Compute parameter estimates by logistic regression (MPLE)
but don’t use the standard errors from logistic regression.

Bootstrap sampling: repeatedly sample N graphs from the
observed graphs G1, . . . ,GN (with replacement) and use the
resulting distribution of the parameters.



Bootstrap sampling of confidence intervals.

Given N observed graphs G1, . . . ,GN from an ERGM with
unknown parameters.

1. For j = 1, . . . ,q

1.1 sample uniformly, with replacement, N indices
i(j)
1 , . . . , i(j)

N from 1, . . . ,N;

1.2 compute θ(j) = MPLE(Gi(j)
1
, . . . ,Gi(j)

N
);

2. compute confidence intervals from θ(1), . . . , θ(q).

Reject the null hypothesis if, for instance, the 95% confidence
interval of a parameter is positive.

Is implemented in the xergm package.



Constrained ERGMs.



Constrained ERGMs.

ERGMs can be defined on constrained graph spaces, e. g.,
I only graphs with exactly m edges;
I only graphs with bounded maximum or minimum degree;
I only graphs with given degree distribution; . . .

Constraints might result from specific data collection.

(Almost) everything stays the same as for unconstrained
ERGMs (use the constraints argument of ergm).

I Markov chain simulation has to be adapted to never leave
the graph space.

I Hammersley-Clifford Theorem is no longer valid.
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