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Inference in Curved Exponential Family Models
for Networks

David R. HUNTER and Mark S. HANDCOCK

Network data arise in a wide variety of applications. Although descriptive statistics
for networks abound in the literature, the science of fitting statistical models to complex
network data is still in its infancy. The models considered in this article are based on
exponential families; therefore, we refer to them as exponential random graph models
(ERGMs). Although ERGMs are easy to postulate, maximum likelihood estimation of
parameters in these models is very difficult. In this article, we first review the method
of maximum likelihood estimation using Markov chain Monte Carlo in the context
of fitting linear ERGMs. We then extend this methodology to the situation where the
model comes from a curved exponential family. The curved exponential family method-
ology is applied to new specifications of ERGMs, proposed in an earlier article, having
nonlinear parameters to represent structural properties of networks such as transitivity
and heterogeneity of degrees. We review the difficult topic of implementing likelihood
ratio tests for these models, then apply all these model-fitting and testing techniques to
the estimation of linear and nonlinear parameters for a collaboration network between
partners in a New England law firm.

Key Words: Exponential random graph model; Markov chain Monte Carlo; Maximum
likelihood estimation; p-star model.

1. INTRODUCTION

A network is a way to represent “relational data”—that is, data whose properties cannot
be reduced to the attributes of the individuals involved—in the form of a mathematical
graph. For the purposes of this article, a network consists of a set of nodes and a set of edges,
where an edge is an ordered or unordered pair of nodes. In typical applications, the nodes
in a graph represent individuals, and the edges represent a specified relationship between
individuals. Nodes can also be used to represent larger social units such as groups, families,
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566 D. R. HUNTER AND M. S. HANDCOCK

or organizations; objects such as physical resources, servers, or locations; or abstract entities
such as concepts, texts, tasks, or random variables. Networks have been applied to a wide
variety of situations, including the structure of social networks, the dynamics of epidemics,
the interconnectedness of the World Wide Web, and long-distance telephone calling patterns.

This article concerns inference in specific probabilistic models for networks. Through-
out, we will represent a generic random network by the matrix Y , an n×nmatrix where n
is the number of nodes. Each Yij can equal zero or one, with one indicating the presence of
an edge between i and j and zero indicating the absence of such an edge. More complicated
networks may be represented if Yij is allowed to take on arbitrary values, in which case
the edges may be considered to have weights; however, we avoid such complications here.
We disallow the possibility of self-edges, so Yii = 0 for all i. Furthermore, for the sake
of simplicity we develop arguments using the assumption that Y is undirected—that is,
Yij = Yji for all i and j so only the lower triangle of Y is relevant. However, none of the
theory we present depends essentially on the undirectedness assumption.

The models we consider for the random behavior of Y rely on a p-vector Z(Y ) of
statistics and a parameter vector η ∈ Rp. The canonical exponential family model is

P (Y = y) = exp{ηtZ(y) − ψ(η)}, (1.1)

where

exp{ψ(η)} =
∑

x

exp{ηtZ(x)} (1.2)

is the familiar normalizing constant associated with an exponential family of distributions
(Barndorff-Nielsen 1978; Lehmann 1983). The sum in (1.2) is taken over the whole sample
space, which presents a very important problem in most applications: A sample space
consisting of all possible undirected graphs on n nodes contains exp{(n2) log 2} elements,
an astronomically large number even for moderately sized n of, say, 20. For certain choices
of Z(y)—for instance, when Z(y) is a linear combination of the yij—expression (1.2)
simplifies greatly and exact maximum likelihood estimation is possible. However, for many
useful models, including those considered in this article, the enormity of the sample space
makes it impossible even to evaluate the likelihood function for a particular η, let alone
maximize it. We consider ways around this problem in Section 2.

The range of network statistics that might be included in the Z(y) vector is vast, though
we will consider only a few in this article. See Wasserman and Faust (1994) for a com-
prehensive treatment of descriptive network statistics and Strauss and Ikeda (1990) and
Wasserman and Pattison (1996) for a discussion of how these statistics may be incorporated
into model (1.1). We allow the vector Z(y) to include covariate information about nodes or
edges in the graph in addition to information derived directly from the matrix y itself. Thus,
Z(y) should be viewed as a function not only of y, but also potentially of certain exogenous
covariates, by which we mean covariates on nodes or pairs of nodes whose values are not
affected by the presence or absence of edges. For example, if each node is a person, Z(y)
might include the total number of edges between individuals of the same gender, which is
a function of both the graph y and the exogenous nodal covariate gender. For notational
simplicity, we prefer to allow the dependence of Z on exogenous covariates to be implicit
rather than explicitly indicated by the notation.
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INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 567

There has been a lot of work on models of the form (1.1), to which we refer as expo-
nential random graph models or ERGMs for short. (We avoid the lengthier EFRGM, for
“exponential family random graph models,” both for the sake of brevity and because we
consider some models in this article that should technically be called curved exponential
families.) Holland and Leinhardt (1981) appear to be the first to propose a specific case of
model (1.1) in the literature. Their model, which they called the p1 model, resulted in each
dyad—by which we mean each pair of nodes—having edges independently of every other
dyad. Based on developments in spatial statistics (Besag 1974), Frank and Strauss (1986)
generalized to the case in which dyads exhibit a kind of Markovian dependence: Two dyads
are dependent, conditional on the rest of the graph, only when they share a node. Frank
(1991) mentioned the application of model (1.1) to social networks in its full generality.
This was pursued by Wasserman and Pattison (1996). In honor of Holland and Leinhardt’s
p1 model, they referred to model (1.1) as p∗ (p-star), a name that has been widely applied
to ERGMs in the social networks literature.

Inference for this class of models was considered in the seminal paper by Geyer and
Thompson (1992), building on the methods of Frank and Strauss (1986) and the above-
cited articles. Until recently, inference for social networks models has relied on maximum
pseudo-likelihood estimation (Besag 1974; Frank and Strauss 1986; Strauss and Ikeda 1990;
Geyer and Thompson 1992). Geyer and Thompson (1992) proposed a stochastic algorithm
to approximate maximum likelihood estimates for model (1.1) among other models; this
Markov chain Monte Carlo (MCMC) approach forms the basis of the method described
in this article. The development of these methods for social network data was considered
by Dahmström and Dahmström (1993); Corander, Dahmström, and Dahmström (1998);
Crouch, Wasserman, and Trachtberg (1998); Snijders (2002); and Handcock (2002).

In this article, we begin with a summary in Section 2 of the basic idea behind the
MCMC maximum likelihood approach. Many of the estimation ideas in Section 3 are more
or less implicit in the articles of Geyer and Thompson (1992) and Geyer (1994), though
their application to fitting curved exponential family models is new. Section 4 describes
several particular ERGMs due to Snijders, Pattison, Robins, and Handcock (2006) and
demonstrates how to fit them. Section 5 discusses an approach to the difficult issue of
implementing a likelihood ratio test in this context. Finally, Section 6 ties all of the previous
sections together, demonstrating the use of these methods to fit an ERGM to a collaboration
network among lawyers, a problem considered by Snijders et al. (2006). Whereas Snijders
et al. (2006) estimated some of the parameters in their model but assumed others were
fixed and known, we apply the curved exponential family machinery to estimating all of
the parameters.

2. MARKOV CHAIN MONTE CARLO MAXIMUM
LIKELIHOOD ESTIMATION

In Section 1, we pointed out the difficulty of evaluating ψ(η) in Equation (1.2) due to
the fact that it involves a sum with an extremely large number of terms. Here, we discuss
a way around this problem in preparation for a discussion in Section 3 about estimating
the parameters via maximum likelihood. The method uses Markov chain Monte Carlo to
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568 D. R. HUNTER AND M. S. HANDCOCK

approximate the likelihood function, and then maximizes this approximation. This is not the
only method that has been proposed for this particular estimation problem; Snijders (2002)
proposed a version of the Robbins-Monro algorithm (1951) that attacks the estimation
problem by trying to find an approximate solution to the moment equation

E η̂ηη Z(Y ) = Z(yobs)

that is satisfied if and only if η̂ is the maximum likelihood estimator of η. We refer readers
to Snijders (2002) for details of this approach.

Let η and η0 denote two distinct values of the canonical parameter in model (1.1). We
are interested in calculating exp{ψ(η) − ψ(η0)} as a function of η, where η0 is fixed and
known. Since

exp{ψ(η) − ψ(η0)} =
∑

x

exp{(η − η0)tZ(x)}
(

exp{(η0)tZ(x)}
exp{ψ(η0)}

)
= E ηηη0

[
exp{(η − η0)tZ(Y )}] , (2.1)

we may approximate exp{ψ(η) − ψ(η0)} by the sample mean

1
m

m∑
i=1

exp{(η − η0)tZ(Yi)}, (2.2)

where Y1, . . . , Ym is a sample of random graphs from the distribution defined by η0. Such
a sample may be obtained using Markov chain Monte Carlo.

Let �(η) be the log-likelihood for model (1.1) based on observing a single realization

yobs of Y . Letting r(η,η0)def=�(η) − �(η0) denote the logarithm of the likelihood ratio, we
apply the ideas above and approximate r(η,η0) by

r̂m(η,η0) def= (η − η0)tZ(yobs) − log

[
1
m

m∑
i=1

exp{(η − η0)tZ(Yi)}
]
. (2.3)

The strong convergence of r̂m(η,η0) to r(η,η0) as m → ∞ is guaranteed by a Markov
chain version of the strong law of large numbers (Meyn and Tweedie 1993). Thus, for a fixed
sample size m, maximization of r̂m(η,η0) as a function of η gives an approximation to
the maximum likelihood estimator η̂. This procedure, which may be termed Markov chain
Monte Carlo maximum likelihood estimation (MCMCMLE for those who like acronyms),
originates in Geyer and Thompson (1992).

Note that �(η) and r(η,η0) are unchanged if Z(y) is replaced by Z(y) − a for some
constant vector a. For example, we might take a = Z(yobs), in which case Z(y) − a
represents the change in the vector of statistics for the graph y relative to the observed graph
yobs. This makes Z(yobs) = 0, which simplifies the definition of r̂m(η,η0) in Equation
(2.3). Alternatively, we might take a = 1

m

∑m
i=1 Z(Yi), which has the effect of centering

the Z(Yi) − a vectors at zero, leading to more stable numerical calculations.
In some applications, we may want to estimate not merely the likelihood ratio but

the actual value of the log-likelihood itself. This may be accomplished by noting that
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INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 569

�(0) = − logM , whereM is the size of the sample space. For instance, if the sample space
includes all undirected graphs on n nodes, then logM =

(
n
2

)
log 2. By combining �(0)

with estimates of �(η) − �(η0) and �(0) − �(η0), we obtain

�̂(η) def= r̂m(η,η0) − r̂m(0,η0) − logM. (2.4)

The simplicity of Equation (2.4) belies the inherent difficulty of reliably estimating r(η,η0)
and r(0,η0). Such estimation is the topic of Section 5.

It remains to describe how to generate a Markov chain whose stationary distribution
is given by Equation (1.1). The simplest Markov chain proceeds by choosing (by some
method, either stochastic or deterministic) a dyad (i, j) and then deciding whether to set
Yij = 1 or Yij = 0 at the next step of the chain. One way to do this is using Gibbs sampling,
whereby the new value of Yij is sampled from the conditional distribution of Yij conditional
on the rest of the graph. Denote “the rest of the graph” by Y c

ij . Then Yij |Y c
ij = yc

ij has a
Bernoulli distribution, with odds given by

P (Yij = 1|Y c
ij = yc

ij)
P (Yij = 0|Y c

ij = yc
ij)

= exp{ηt∆(Z(y))ij}, (2.5)

where ∆(Z(y))ij denotes the difference between Z(y) when yij is set to 1 and Z(y) when
yij is set to 0. A simple variant to the Gibbs sampler (which is an instance of a Metropolis-
Hastings algorithm) is a pure Metropolis algorithm in which the proposal is always to change
the value of yij . This proposal is accepted with probability min{1, π}, where

π =
P (Yij = 1 − yij |Y c

ij = yc
ij)

P (Yij = yij |Y c
ij = yc

ij)
=
{

exp {ηt∆(Z(y))ij} if yij = 0;
exp {−ηt∆(Z(y))ij} if yij = 1.

The vector ∆(Z(y))ij used by these MCMC schemes is often much easier to calculate
directly than as the difference of two separate values of Z(y). For instance, if one of the
components of the Z(y) vector is the total number of edges in the graph, then the corre-
sponding component of ∆(Z(y))ij is always equal to 1.

The Metropolis scheme is usually preferred over the Gibbs scheme because it results in a
greater probability of changing the value of yij , a property thought to produce better-mixing
chains. However, it is well known that these simple MCMC schemes often fail for various
reasons to produce well-mixed chains (Snijders 2002; Handcock 2002, 2003; Snijders et al.
2006). The choice of the model class and more sophisticated MCMC schemes are a topic
of ongoing research. We return to the former in Section 4.

3. ESTIMATION FOR CURVED EXPONENTIAL FAMILIES

Suppose that η ∈ Rp, the canonical parameter in Equation (1.1), is a function of a
lower-dimensional parameter θ ∈ Rq, q < p. If the function is linear, say η = Aθ for
some p× q matrix A, then θ is simply the canonical exponential family parameter for the
reduced set of statisticsAtZ(y). However, if the function mapping θ to η is nonlinear, then
in general the situation is more complicated. The family of distributions

P (Y = y) = exp{η(θ)tZ(y) − ψ[η(θ)]}, θ ∈ Rq
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570 D. R. HUNTER AND M. S. HANDCOCK

is called a curved exponential family in the terminology of Efron (1975).
The maximum likelihood estimator θ̂ satisfies the likelihood equation

∇�(θ̂) = ∇η(θ̂)t[Z(yobs) − E
ηηη(θ̂θθ) Z(Y )] = 0, (3.1)

where ∇η(θ) is the p×qmatrix of partial derivatives of η with respect to θ. We may search
for a solution to Equation (3.1) using an iterative technique such as Newton–Raphson;
however, the exponential family form of the model makes the Fisher information matrix

I(θ) = ∇η(θ)t[varηηη(θθθ) Z(Y )]∇η(θ) (3.2)

easier to calculate than the Hessian matrix of second derivatives required for Newton–
Raphson. For more about Equations (3.1) and (3.2), see Efron (1978). The information
matrix (3.2) is the basis for the method of Fisher scoring, which is analogous to Newton-
Raphson except that −I(θ) is used in place of the Hessian matrix. Thus, if θ(k) denotes the
estimate of θ at the kth iteration, Fisher scoring sets

θ(k+1) = θ(k) +
[
I(θ(k))

]−1
∇�(θ(k)). (3.3)

The biggest obstacle to overcome in implementing the scoring algorithm (3.3) is the
fact that E ηηη(θθθ) Z(Y ) and varηηη(θθθ) Z(Y ) are difficult to calculate directly for ERGMs. One
approach to estimating these quantities is to use one of the MCMC methods described in
Section 2 to generate a sample Y1, . . . , Ym from the distribution defined by the parameter
value θ, then use the sample mean and covariance of Z(Y1), . . . ,Z(Ym) to approximate
E ηηη(θθθ) Z(Y ) and varηηη(θθθ) Z(Y ). However, such an approach could prove computationally
expensive in an optimization routine, since a new sample would have to be generated each
time the value of θ changed. An alternative is to generate a single sample, based on a fixed
parameter value θ0. Let Y1, . . . , Ym denote this sample, and suppose that θ(k) is the value
of the parameter vector at the kth iteration of an iterative algorithm. Then the approximate
Fisher scoring method is implemented as

θ(k+1) = θ(k) +
{
Î(θ(k))

}−1
∇η(θ)t

[
Zobs −

∑
i

w
(k)
i Zi

]
, (3.4)

where Zobs and Zi denote Z(yobs) and Z(Yi), respectively;

w
(k)
i =

exp{[η(θ(k)) − η(θ0)]tZi}∑n
j=1 exp{[η(θ(k)) − η(θ0)]tZj}

;

and

Î(θ(k)) = ∇η(θ(k))t


m∑

i=1

w
(k)
i ZiZ

t
i −
(

m∑
i=1

w
(k)
i Zi

)(
m∑

i=1

w
(k)
i Zi

)t
∇η(θ(k)). (3.5)

Equations (3.4) and (3.5) are derived by first writing E ηηη(θθθ) Z(Y ) and varηηη(θθθ) Z(Y ) in terms
of expectations involving only E ηηη(θθθ0) as in Equation (2.1), then substituting sample means
like expression (2.2) for population means.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
K

on
st

an
z]

 a
t 0

0:
02

 2
4 

N
ov

em
be

r 
20

14
 



INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 571

The two ideas above for stochastic optimization algorithms, one in which we generate
a new sample with every iteration and one in which we generate only a single sample, each
have their drawbacks. As pointed out above, the first idea is expensive computationally.
However, the second may lead to an estimate r̂m that is not very close to r (where there is no
ambiguity, we write r̂m and r instead of r̂m[η(θ),η(θ0)] and r[η(θ),η(θ0)], respectively).
A compromise is represented by the following scheme, which is similar to the approach
used by Geyer and Thompson (1992):

1. Select an initial value θ0.

2. Generate an MCMC sample Z(Y1), . . . ,Z(Ym) using the parameter θ0.

3. Iterate algorithm (3.4) until convergence, obtaining a maximizer θ̃ of r̂m.

4. If v̂ar r̂m of Equation (3.6) is too large compared to �̂(η(θ̃)), say
√

v̂ar r̂m > k�̂(η(θ̃))
for some constant k, then set θ0 = θ̃ and return to step 2.

5. Take θ̃ to be the MCMCMLE.

Some discussion of the logic of this algorithm is in order. The overall goal is to find a
solution to Equation (3.1); and, since r[η(θ),η(θ0)] differs from �(θ) only by a constant,
this is equivalent to finding a point at which the gradient, with respect to θ, of r[η(θ),η(θ0)]
is zero. But it is impossible to numerically find a zero of ∇r, since neither r nor ∇r can
be directly evaluated; thus, in Step 3 we instead find an exact zero of the approximation
∇r̂m. But now an important question remains: How good is the approximation of r by r̂m?
The point of Step 4 is to decide when the approximation is not good enough, so that a new
(presumably better) version of r̂m can be constructed.

Thus, we take θ̃ to be the MCMCMLE provided that we are convinced that r̂m is close
to the true r. To this end, let Ui denote exp{[η(θ) − η(θ0)]tZi} for i = 1, . . . ,m and
Ū = 1

m

∑m
i=1 Ui. The variance used in Step 4 is

varMC [r̂m] def=
1

m2Ū2

K∑
k=−K

(m− |k|)γ̂k, (3.6)

where γ̂k = γ̂−k denotes the sample lag-k autocovariance of the sequence U1, U2, . . .,
which we assume to be stationary. Equation (3.6) is obtained from the Taylor approximation
log(a/b) ≈ (a− b)/b, whence

var
[
log
(
Ū
)] ≈ var(Ū)

[E(Ū)]2
.

Estimators like the one in Equation (3.6), and also Equation (3.10) seen later, are called
window estimators in Section 3.4 of Roberts (1996), where a number of alternative solutions
to the problem of estimating the variance of the mean of a stationary sequence are discussed
and references are cited. Cowles, Roberts, and Rosenthal (1999) gave a comparison of some
of these methods. Essentially, we wish to chooseK  m so that γk is approximately zero
for |k| > K. In particular, if the Ui are approximately uncorrelated so K = 0 (e.g.,
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572 D. R. HUNTER AND M. S. HANDCOCK

if the Markov chain is sampled only at very large intervals), expression (3.6) reduces to
[
∑

i U
2
i /(mŪ)2] − 1/m.

After the algorithm has converged, the question of obtaining standard errors remains.
There are two interesting aspects of the error: The MCMC error, which is the error in
approximating the true MLE, θ̂, by the MCMCMLE, θ̃; and the usual error inherent in
using the MLE θ̂ to approximate reality. For the latter, we rely on standard asymptotic
results and use the estimated Fisher information matrix (3.5) to obtain an estimate [Î(θ̃)]−1

of the covariance matrix.
For the former error, incurred by approximating θ̂ by θ̃, we obtain a separate MCMC

covariance matrix. Geyer (1994) gave mild regularity conditions under which
√
m(θ̃− θ̂) is

asymptotically normal, conditional on θ̂. The asymptotic covariance matrix of
√
m(θ̃ − θ̂)

forms the basis of our MCMC covariance matrix.
A first-order Taylor expansion gives

√
m(θ̃ − θ̂) ≈ −

[
∇2r̂m(θ̃)

]−1 [√
m∇r̂m(θ̂)

]
. (3.7)

(Note that we write r̂m(θ) instead of r̂m[η(θ),η(θ0)] in order to simplify notation.) Suppose
that graphs Y1, Y2, . . . arise from a (stationary) Markov chain defined by θ0. In expression
(3.7),

√
m∇r̂m(θ̂) converges in distribution asm → ∞ to a q-variate normal distribution

with mean 0 and covariance matrix[
c(θ0)

c(θ̂)

]2 ∞∑
k=−∞

cov[W1(θ̂),W1+|k|(θ̂)], (3.8)

where c(θ)def= exp{ψ[η(θ)]} is the normalizing constant of Equation (1.2) and

Wi(θ)def= {Z(yobs) − Z(Yi)} exp
{
[η(θ) − η(θ0)]tZ(Yi)

}
. (3.9)

We do not know the value of θ̂ in expression (3.8); therefore, we approximate it by θ̃. Using
a sample mean as in Equation (2.2) to approximate the ratio c(θ0)/c(θ̃), expression (3.8)
is approximately

Ṽ
def=

1
m2

[
m∑

i=1

exp{[η(θ0) − η(θ̃)]tZ(Yi)}
]2 K∑

k=−K

ξ̂k, (3.10)

where ξ̂k = ξ̂−k is the sample lag-k autocovariance matrix of the sequence W1(θ̃),W2(θ̃),
. . ..

As in Equation (3.2), the Hessian matrix ∇2r̂m(θ̃) of Equation (3.7) is difficult to
calculate. Therefore, we make one final substitution and use instead the estimated Fisher
information matrix Î(θ̃), which yields

1
m

[
Î(θ̃)

]−1
Ṽ
[
Î(θ̃)

]−1
(3.11)

as our estimated MCMC covariance matrix for θ̃.
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INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 573

4. ALTERNATING k-STARS AND ALTERNATING k-TRIANGLES

We illustrate the methods discussed in Sections 2 and 3 by applying them to a class
of ERGMs proposed by Snijders et al. (2006). To begin with, we define graph statistics
D0(y), . . . , Dn−1(y), known as the degree distribution of y, and P0(y), . . . , Pn−2(y),
which we call the shared partner distribution of y. The degree distribution statistics are
well-known in the networks literature, whereas the shared partner distribution statistics are
introduced for the first time in the current article as far as we are aware.

For a given i, 1 ≤ i ≤ n − 1, Di(y) is defined to be the number of nodes in y whose
degree—the number of edges incident to the node—equals i. For instance, Dn−1(y) = n
when y is the complete graph and D0(y) = n when y is the empty graph. Note that
D0, . . . , Dn−1 satisfy the linear constraint D0 + · · · +Dn−1 = n.

For a given i, 0 ≤ i ≤ n− 2, Pi(y) is defined to be the number of dyads (j, k)—where
we assume j < k since the graph is assumed undirected—such that j and k are neighbors of
each other and they share exactly i neighbors in common. (“Neighbors” are simply nodes
connected by an edge.) Unlike the Di statistics, the Pi statistics do not satisfy a linear
constraint; however, note that P0 + · · · + Pn−2 equals the total number of edges in the
graph.

Snijders et al. (2006) based some of their ERGMs on graph statistics that may be derived
from the Di and Pi. Let Sk(y), 1 ≤ k ≤ n− 1, denote the number of k-stars in the graph
y. A k-star consists of a node together with a set of k of its neighbors. Like the degree
statisticsDi, the k-star statistics are well-known in the networks literature. Because a node
with degree i is the center of

(
i
k

)
k-stars,

Sk(y) =
n−1∑
i=1

(
i

k

)
Di(y) for k ≥ 2. (4.1)

For k = 1, a k-star is simply an edge, and the number of edges is

E(y) def= S1(y) =
1
2

n−1∑
i=1

iDi(y). (4.2)

In addition to the well-known k-star statistics, Snijders et al. (2006) also introduced
a new set of statistics they call k-triangles. They use Tk(y), 1 ≤ k ≤ n − 2, to denote
the number of k-triangles in the graph y. A k-triangle consists of k triangles that share
one common edge. Thus, if the endpoints of a particular edge share exactly i neighbors in
common, then that edge is the base of exactly

(
i
k

)
k-triangles. The relationship between the

k-triangle statistics Tk and the shared partner statistics Pi is very similar to the relationship
between the k-star statistics and the degree statistics expressed in Equation (4.1):

Tk(y) =
n−2∑
i=1

(
i

k

)
Pi(y) for k ≥ 2. (4.3)

For k = 1, a k-triangle is simply a triangle, so

T1(y) =
1
3

n−2∑
i=1

iPi(y). (4.4)
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574 D. R. HUNTER AND M. S. HANDCOCK

Figure 1. For this undirected, five-node graph, the degree distribution (D0, . . . , D4) is given by (0, 1, 1, 3, 0)
and the shared partner distribution (P0, . . . , P3) is given by (1, 4, 1, 0). The edges might represent, say, some
social relationship between individuals, and the node shapes might signify some exogenous categorical covariate
such as gender.

To make these concepts concrete, consider the simple undirected graph depicted in
Figure 1. There are three 3-stars, centered at nodes 2, 3, and 4, and each of these accounts
for
(3
2

)
= 3 of the ten 2-stars. There are two 1-triangles (i.e., two triangles), and since

these two triangles share an edge there is also one 2-triangle. The degree distribution and
the shared partner distribution, given in the caption of Figure 1, may be used to verify
Equations (4.1), (4.2), (4.3), and (4.4) along with the fact that E(y) =

∑n−2
i=0 Pi(y). These

relationships may be combined to yield

P0(y) =
1
2

n−1∑
i=1

iDi(y) −
n−2∑
i=1

Pi(y). (4.5)

Since both D0 and P0 may be expressed as linear combinations of the other Di and Pi

statistics, the vector Z(y) of ERGM (1.1) based on all degree and shared partner statistics
should omit D0 and P0:

Z(y) = [D1(y), . . . , Dn−1(y), P1(y), . . . , Pn−2]
t
. (4.6)

When Z(y) of Equation (4.6) is used in model (1.1) with an unconstrained η ∈ R2n−3,
the model class is subject to well-known issues of degeneracy (Snijders 2002; Handcock
2002, 2003; Snijders et al. 2006). One type of model degeneracy occurs when the model
places most of the probability mass on only a few of the possible graph configurations. The
fact that nondegenerate values of η form only a small section of the natural parameter space
(Handcock 2003) reduces the value of this model class for describing realistic phenomena.
Another problem is the nonexistence of an MLE: Whenever the observed graph statistics
fall on the convex hull of the sample space of graph statistics, then the MLE does not exist
(Barndorff-Nielsen 1978; Handcock 2003). If the full Z(y) vector of Equation (4.6) is used,
this problem is virtually guaranteed to occur, since typically at least one element of Z(y) is
zero for any realistic network.

To address these problems, we consider constraints on the natural parameter space. In
doing so, we hope to limit our attention to subsets of the full parameter space that result
in realistic social network models. Furthermore, the constraints reduce the dimension of
the sample space of statistics and make it more probable that an MLE will exist. One way
to implement constraints in this case was recommended by Snijders et al. (2006), who
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INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 575

introduced an alternating k-star statistic and an alternating k-triangle statistic (in addition,
they introduced an alternating independent two-paths statistic that we do not discuss here).
In reality, these “statistics” are not quite statistics because they are based on parameters;
however, Snijders et al. (2006) assumed that these parameters are fixed and known. In this
article, we relax this restriction and estimate these additional parameters.

The alternating k-star and alternating k-triangle “statistics” of Snijders et al. (2006) are
defined as

uλ(y) = S2(y) − S3(y)
λ

+ · · · + (−1)n−1Sn−1(y)
λn−3 ,

and

vγ(y) = 3T1 − T2

γ
+ · · · + (−1)n−1Tn−2

γn−3 ,

respectively, where λ and γ are additional parameters. Including, say, uλ(y) in an ERGM
achieves the desired restriction on the parameter space by replacing the n− 2 coefficients
of S2, . . . , Sn−1 by only two parameters: λ and the coefficient of uλ. In justifying their
particular choice for the form of uλ, Snijders et al. (2006) pointed out that when the number
of edgesE (equivalently,S1) is also included in the model, the alternating k-star statistic has
the effect of placing geometrically decreasing weights on the degree statistics. They argued
that this mitigates against what they termed an “avalanche” effect in which the MCMC
routine, once a few new edges are created in the graph, is quickly forced to add edge after
edge until the complete graph is reached. Thus, they considered an ERGM that includes
statistics E (the number of edges), uλ, and vγ :

P (Y = y) ∝ exp{θ1E(y) + θ2uλ(y) + θ3vγ(y)}. (4.7)

Because we wish both λ and γ to be positive, we reparameterize, letting θ4 = log λ
and θ5 = log γ. We may express the canonical parameter η of Equation (1.1) in terms of
θ1, . . . , θ5 by replacing Sk and Tk by the expressions in equations (4.1), (4.2), (4.3), and
(4.4): The binomial theorem yields

u(y; θ4)
def=uλ(y) = e2θ4

n−1∑
i=1

{(
1 − e−θ4

)i − 1 + ie−θ4

}
Di(y), (4.8)

and

v(y; θ5)
def=vγ(y) = eθ5

n−2∑
i=1

{
1 − (1 − e−θ5

)i}
Pi(y). (4.9)

Equations (4.8) and (4.9) reveal that the coefficients of Di and Pi include geometric se-
quences whose ratios are based on θ4 and θ5. For this reason, we refer to θ4 and θ5 as
the ratio parameters of the geometrically weighted degree distribution and geometrically
weighted shared partner distribution, respectively. The function η(θ) relating the canonical
parameter η to the parameter (θ1, . . . , θ5) of model (4.7) is required by equations such as
(3.1) and (3.2); it is summarized by

ηi =
{
θ1i+ θ2ieθ4 − θ2e2θ4 + θ2e2θ4(1 − e−θ4)i if 1 ≤ i ≤ n− 1;
θ3e

θ5
[
1 − (1 − e−θ5)i

]
if n ≤ i ≤ 2n− 3.

(4.10)
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576 D. R. HUNTER AND M. S. HANDCOCK

Model (4.7) subsumes a number of simpler models. When θ2 = θ3 = 0, the resulting
model P (Y = y) ∝ exp{θ1E(y)} is the simplistic Bernoulli graph (also known as an
Erdős-Rényi graph) in which each edge occurs independently with probability eθ1/(1+eθ1).
When θ3 = θ4 = 0, Equation (4.10) reduces to ηi = i(θ1+θ2)−θ2 for 1 ≤ i ≤ n−1, which
gives P (Y = y) ∝ exp{(θ1 + θ2)E(y) + θ2D0(y)}. This model contains a “Bernoulli”
term and one additional term that governs the propensity for a node to remain unconnected
to the rest of the graph. Similarly, when θ2 = θ5 = 0, the model reduces to P (Y = y) ∝
exp{(θ1 + θ3)E(y)− θ3P0(y)}, which contains an additional term that governs how likely
neighboring nodes are to resist having any shared neighbors. It is important to note that if
θ2 = 0 (or θ3 = 0), there is an identifiability problem because in that case the value of θ4
(or θ5) is arbitrary. In practical terms, this means that we should not attempt to interpret the
value of θ4 (or θ5) unless the hypothesis θ2 = 0 (or θ3 = 0) can be rejected.

5. LIKELIHOOD RATIO TESTING

Since 2r̂m[η(θ̃),η(θ0)] is an estimate of the likelihood ratio statistic 2r[η(θ̃),η(θ0)] =
2�[η(θ̃)] − 2�[η(θ0)] for testing the null hypothesis θ = θ0, it might seem that likelihood
ratio testing is straightforward in this framework. Unfortunately, this is not quite the case:
The approximation 2r̂m[η(θ),η(θ0)] ≈ 2r[η(θ),η(θ0)] becomes worse as θ gets farther
from θ0. To estimate r[η(θ̃),η(θ0)] accurately necessitates methods to try to lessen the
impact of the MCMC error. We do not make any claims here about the distribution of
2r[η(θ̃),η(θ0)]; we concern ourselves in this section only with how best to approximate it
using MCMC.

The problem reduces to the problem of estimating the ratio of normalizing constants
c(θ̃)/c(θ0), which is a problem that has received quite a bit of attention in the statistics
literature in the past decade. Indeed, in presenting some of the history of this problem,
Gelman and Meng (1998) pointed out that it had been studied by physicists before it came
to the notice of statisticians, and quite a bit of reinventing the wheel was done by the statistics
community. The basic idea of path sampling (Gelman and Meng 1998) is as follows. Define
a smooth mapping θ : [0, 1] → Rq such that θ(0) = θ0 and θ(1) = θ̃. Then

E θθθ(u)

{
d

du
log p[Y |θ(u)]

}
=
d

du

∑
y

p[y|θ(u)] = 0, (5.1)

where

p(y|θ) def= exp{[η(θ)]tZ(y) − ψ[η(θ)]} (5.2)

is the probability mass function. Combining Equations (5.1) and (5.2) gives

d

du
ψ{η[θ(u)]} = E θθθ(u)

{
d

du
{η[θ(u)]}tZ(Y )

}
,

which may be integrated to give

ψ[η(θ̃)] − ψ[η(θ0)] =
∫ 1

0
E θθθ(u)

d

du
{η[θ(u)}tZ(Y ) du = E

d

dU
{η[θ(U)]}tZ(Y ). (5.3)
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INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 577

The last expectation in Equation (5.3) is taken with respect to the joint distribution of U
and Y , where U is uniform (0,1) and Y |U is distributed according to θ(U).

Equation (5.3) suggests that �[η(θ̃)] − �[η(θ0)] = ψ[η(θ̃)] − ψ[η(θ0)] could be esti-
mated by drawing a sample (U1, Y1), . . . , (UK , YK) from the joint distribution of U and
Y , then calculating the sample average

1
K

K∑
i=1

[∇θ(Ui)]{∇η[θ(Ui)]}Z(Yi),

where ∇θ(u) is the 1× q vector of derivatives of θ(u) with respect to u. We may allow the
Ui to be sampled from some density on (0,1), say q(u), other than uniform; each summand
in the sample mean above should then be divided by q(Ui). However, the function q(u)
may be absorbed into the path map θ(u), so no generality is lost by assuming that U is
uniformly distributed.

On the other hand, it is not hard to generalize the argument leading to Equation (5.3)
to allow for the possibility that U has finite support on [0, 1]. In fact, U need not even be
random: Suppose that 0 = u0 < u1 < . . . < uJ = 1 are given and for each j, 0 ≤ j ≤ J ,
we draw a random sample Yj1, . . . , YjKj from the distribution defined by θ(uj). The new
estimator of �[η(θ̃)] − �[η(θ0)] is

J∑
j=1

Kj∑
i=1

1
Kj

[∇θ(uj)]{∇η[θ(uj)]}Z(Yji). (5.4)

This idea is a simple form of a technique called bridge sampling by Meng and Wong
(1996). In the implementation of bridge sampling carried out in Section 6, we take θ(uj) =
θ0 + j(θ̃ − θ0)/J , which corresponds to uj = j/J and a linear path from θ0 to θ̃.

6. EXAMPLE: COLLABORATION WITHIN A LAW FIRM

As an application of these ideas, we consider the collaborative working relations between
36 partners in a New England law firm. These data were collected and described extensively
by Lazega and Pattison (1999) and Lazega (2001). For our purposes, an edge is said to exist
between two partners if, and only if, both indicate that they collaborate with the other. As
noted in the analysis of these data by Snijders et al. (2006), the degrees of the nodes range
from 0 to 16, with an average of 6.4. The data include covariates collected on each partner.
Here we consider seniority (rank number of entry into the firm), gender, office (there were
three offices in different cities), and practice (there are two possible values, litigation = 0
and corporate law = 1).

Our objective is to explain the observed structural pattern of collaborative edges as a
function of network statistics, both exogenous and endogenous. The purely endogenous
statistics (i.e., those that are true functions of the graph matrix Y ) we consider are the
number of edges and the alternating k-triangle statistic v(y; θ) of Section 4. We have not
included the alternating k-star statisticu(y; θ), both to simplify the presentation and because
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578 D. R. HUNTER AND M. S. HANDCOCK

our results and those of Snijders et al. (2006) indicate that including that statistic does not
appreciably alter the fit of the model.

The statistics involving exogenous data that we consider are all of the form

Z(y) =
∑

1≤i<j≤n

yijf(Xi,Xj) (6.1)

for some symmetric function f of the nodal covariate vectors Xi and Xj . In expression
(6.1), yij is the indicator of an edge between nodes i and j, so f(Xi,Xj) may be thought
of as simply an entry in the change statistic vector ∆(Z(y))ij of Equation (2.5). Following
Snijders et al. (2006), we first consider the “main effects” of both seniority and practice,
for which f(Xi,Xj) = seniorityi + seniorityj and f(Xi,Xj) = practicei + practicej ,
respectively. We also consider the “similarity effects” of practice, gender, and office. The
similarity effect for, say, practice defines f(Xi,Xj) to be I{practicei = practicej}. Setting
θ2 = θ4 = 0 and adding the covariates, model (4.7) becomes

P (Y = y) ∝ exp{θ1E(y) + θ3v(y; θ5) + βT Z(y)}, (6.2)

where Z(y) is the five-dimensional vector of graph statistics containing the two main effects
(seniority and practice) and three similarity effects (practice, gender, and office) described
earlier. Essentially, this model allows us to estimate the effects of the covariates on collab-
oration while controlling for the network density (as measured by E(y)) and a structural
transitivity effect (as measured by v(y; θ5)).

Here we briefly discuss some aspects of implementing the inferential procedures given
in Sections 2 and 3. To monitor the statistical properties of the MCMC algorithm, we use
the R package coda. Figure 2 depicts the trace and density plots for a run of sample size
240,000 where only every 1,000th step of the Markov chain is sampled (and 50,000 burn-in
steps were performed). Each row corresponds to a statistic in the model. The values are
measured as deviations from the observed value of the statistic. The left column has the
trace plots of the sample and the right column has the density plots. Visually the sampler
appears to be mixing and the densities are centered about the observed statistics. This
visual impression is supported by numerical diagnostics (Raftery and Lewis 1996; Gelman
1996), which indicate that the 240,000 values are more than sufficient. The initial value of
θ0 was the maximum pseudo-likelihood estimate. (The pseudo-likelihood function is the
“likelihood” obtained by considering all edges yij to be independent, with probabilities
given by Equation (2.5); thus, the maximum pseudo-likelihood estimate may be obtained
by logistic regression.) For the application in this article, only two recalculations of θ0 as
described in Section 3 were necessary.

Table 1 reports the estimates for two models. Model 1 fixes the value of θ5 at log(3) =
1.10, the value chosen by Snijders et al. (2006). With θ5 fixed the model is a regular (i.e.,
noncurved) exponential family. These values replicate those in Snijders et al. (2006); Table
1, Model 2. For compatibility with that article, we have calculated the estimates conditional
on the total number of edges. This conditioning, in which the number of edges is held
constant at 115, removes the edges statistic from the model. The unconditional estimates are
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INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 579

Figure 2. MCMC diagnostics for the collaboration data. On the left side are trace plots of three statistics; on
the right are density estimates and histograms, where zero is the value of the statistic in the observed network.

essentially identical, indicating that the density of collaboration is approximately ancillary
to the other statistics.

The β coefficients of Table 1 can be interpreted as conditional log-odds ratios, as
indicated by equation (2.5). For example, exp(β3) is the ratio of odds of collaboration
between two partners from the same practice to odds of collaboration between two partners
from different practices, conditional on the rest of the graph and assuming that all other
covariates are the same. Thus, the coefficients have the same interpretation as coefficients in
a standard logistic regression, except that in this case the odds must be computed conditional
on the rest of the graph. The standard errors for all of the estimates in Table 1 are obtained
from the Îmatrix of Equation (3.5), evaluated at θ̃ (the MCMC standard errors obtained from
Equation (3.11) are much smaller; if they were not, a larger sample would have been taken).
The usual assessments of significance are based on the approximation of the distributions
of the t ratios by standard Gaussian distributions.

Model 2 fits the curved exponential family model estimating θ5. The interpretation of
the other parameters is similar to Model 1: Collaboration is strongly enhanced by seniority
and by working in the same office, and slightly less by having the same practice or gender.
Collaboration is also enhanced by practicing corporate law, but at a lower level. The large
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580 D. R. HUNTER AND M. S. HANDCOCK

Table 1. MCMC Parameter Estimates for the Collaboration Network. The edge parameter θ1 has been
eliminated from model (6.2) by conditioning.

Model 1 Model 2

Parameter est. s.e. est. s.e.

Alternating k-triangles, (θ3) 0.612 0.091 0.878 0.279
Ratio parameter (θ5) 1.099 – 0.814 0.196
Seniority main effect (β1) 0.024 0.006 0.023 0.006
Practice main effect (β2) 0.352 0.113 0.390 0.117
Same practice (β3) 0.708 0.194 0.757 0.194
Same gender (β4) 0.621 0.257 0.688 0.248
Same office (β5) 1.151 0.195 1.123 0.194

positive values of θ3 and θ5 indicate the presence of complex transitive structure that en-
hances collaboration beyond the effect that would be expected based on the individual and
pairwise partner attributes alone. The ratio parameter θ5 controls the nature of this transi-
tivity: Larger values of θ5 correspond to increased weight on the higher numbers of shared
partners, whereas small positive values correspond to very localized transitive effects (recall
the interpretation of the case θ2 = θ5 = 0 following Equation (4.10)).

It is of interest to test whether the value of the scaling parameter θ5 is statistically
significantly different from that specified in Snijders et al. (2006). To do this we can conduct a
likelihood ratio test as explained in Section 5. Table 2 is based on the approximate likelihood
values for a number of models.

These results indicate that the covariates substantially improve the model fit, as does the
inclusion of the transitivity term (Model 1). Allowing the ratio parameter for this transitivity
to be estimated does not improve the fit significantly from the value specified in Snijders et
al. (2006), which is not surprising because that value was chosen by comparing the results
for several alternative values. Naturally, however, direct estimation of θ5 is to be preferred
unless θ5 can be preset based on theoretical considerations.

7. DISCUSSION

This article gives a fairly comprehensive treatment of maximum likelihood estimation in
a particular type of network modeling problem: Beginning from first principles originally

Table 2. Deviances for the Collaboration Network Among Lawyers

Model Residual deviance Deviance Residual d.f. p value

NULL 598.78 – – –
Covariates only 501.80 96.98 5 0.000
Model 1 457.65 44.15 1 0.000
Model 2 456.21 1.44 1 0.231

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
K

on
st

an
z]

 a
t 0

0:
02

 2
4 

N
ov

em
be

r 
20

14
 



INFERENCE IN CURVED EXPONENTIAL FAMILY MODELS FOR NETWORKS 581

set forth by Geyer and Thompson (1992), we discuss estimation and testing based on
approximations derived from a Markov chain Monte Carlo scheme. We extend these ideas
to curved exponential family models, then discuss particular ERGM specifications due
to Snijders et al. (2006) that exploit this extension. Finally, we fit these models to data.
Although some of the ideas in this article are about 10 years old, the curved exponential
family machinery and its application to the particular ERGMs we discuss here are novel.

In our implementation of the Markov chain sampler, we chose to separate our sampled
values by a large number of Markov chain iterations, namely 1,000. This 1,000-step interval
is vastly longer than the interval used in several examples described by Geyer and Thompson
(1992). The reason we chose such a large separation between sampled values has to do with
the trade-off, mentioned by Geyer and Thompson (1992), between the price paid for more
iterations and the price paid for storing and using sampled values. In our implementation,
additional iterations are extremely fast. Therefore, we are willing to pay the price (more
iterations) for sampled points that are closer to independent than could be expected of points
separated by only a few iterations. Additionally, the slow mixing often exhibited by Markov
chains of this type makes very long runs (much longer than the sample size we can easily
store and use) worthwhile from an exploratory perspective.

We have relied in this article on two distinct asymptotic arguments. On one hand, we
discussed in depth how the MCMC sample sizem contributes to the uncertainty in estimating
the true MLE θ̂ by the MCMCMLE θ̃. On the other hand, we have said relatively little
about how the number of nodes n influences the quality of the estimate θ̂, even though
we have relied on well-known asymptotic results about the MLE such as the use of Fisher
information in approximating its covariance matrix or the implicit assumption that it is
approximately normally distributed. As n grows larger, though, the usual gains in precision
due to asymptotic arguments tend to be offset by an increase in numerical instability: Large
networks have proven very difficult to fit. Currently, the largest n of which we are aware
is reported by Hunter, Goodreau, and Handcock (2005), who successfully fit ERGMs to
networks in which n is greater than 2,000.

However, n is not quite the same as a traditional sample size. What should be the
“effective sample size” for a graph of size n? Presumably, any answer to such a question
would have to be model-specific: When edges are independent, the true sample size is

(
n
2

)
;

on the other hand, in cases of extreme dependence in which one edge determines the value
of all other edges, the effective sample size is one. In any event, the

(
n
2

)
dyads appear to

allow a large number of parameters to be fit, even on a relatively small network. There is the
further complication that many parameters do not have interpretations that are independent
of n; one network might have a totally different MLE from another network that is twice as
large but with qualitatively similar features. Resolving such challenging issues, well beyond
the scope of the current article, is of real importance in establishing a cohesive framework
of statistical network analysis.
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