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ERGM class of models reasonable representation

These are models for cross-sectional network data
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Now...

t0 t1 t2

Networks are dynamic by nature:
the observed networks are the result of tie changes over time

How can we model the network evolution over time?



Longitudinal Network Data
(also referred to as network panel data)

I A social network consists of
I a set of actors N = {1,2, . . . ,n}
I a relation R

I We can represent a network using
I a graph: G(V ,E)
I an adjacency matrix x such that

xij =
{

1 i → j
0 otherwise

Longitudinal network data

I M+1 repeated observations of a network

x(t0), x(t1), . . . , x(tm), . . . , x(tM−1), x(tM)

I actor covariates W (gender, age, social status, ...)



Why does time is important?

i j

h

i j

h

i j

h

i j

h

“expansiveness”

“popularity”

“transitivity”

t0 t1

We can observe a transitive triplet because of several mechanisms



Why does time is important?

Networks can change over time:
ties can be created, deleted or maintained

Some questions:
1. How frequently do actors change ties?
2. What are the reasons that lead to a tie change?
3. How might appear the network in the future?



An example
A. Knecht (2008): “Friendship Selection and Friends’ Influence”

Four time points in the pupils’ first year at secondary school



Some questions

Is there any tendency in friendship formation ...

I towards reciprocity?

t0 t1

I towards transitivity?

t0 t1

I towards homphily w.r.t. gender?

t0 t1



Networks models for longitudinal data

I Stochastic actor-oriented models (SAOMs)
I Temporal exponential random graph models

(TERGMs)

Aim
Explain network evolution as a result of:

I endogenous variables:
structural effects depending on the network only
(e.g. reciprocity, transitivity, etc.)

I exogenous variables:
actor-dependent and dyadic-dependent covariates
(e.g. effect of a covariate on the existence of a tie or on homophily)

simultaneously
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Background: probability space
Definition

A probability space is a pair (Ω,P) where

I Ω is a set of possible outcomes of a random experiment

I P : Ω→ [0,1] is a probability function such that:

1. P(ω)≥ 0

2.
∑
ω∈Ω

P(ω) = 1

Notation
I P(ω) is called the probability of ω ∈ Ω

I The probability of a subset Ω′ ⊆ Ω is defined by P(Ω′) =
∑
ω∈Ω′ P(ω)



Background: random variable
Definition

A (real-valued) random variable (r.v.) is a function X : Ω→ R.
The set of values X can take is called range and will be denoted by S

Example

Random experiment: throwing two dice

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Ω
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Background: stochastic (or random) process
Definition
A stochastic process {X (t), t ∈ T} is a mapping

∀t ∈ T 7→ X (t) : Ω→ R

Notation
I T is an index set
I S is the state space of the process

(i.e. set of values taken by the process)
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Background: stochastic process

Different stochastic processes can be defined according to S and T

S T

Countable (discrete) Uncountable (continuous)

Countable discrete-time with continuous-time with
(finite) finite state space finite state space

Uncountable discrete-time with continuous-time with
(continuous) continuous state space continuous state space
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Background: continuous-time Markov chain

Definition
A continuous-time Markov chain {Xt , t ≥ 0} is a stochastic process

1. with finite state space
2. evolving in continuous-time
3. having the Markovian property

Definition
{X(t), t ∈ T} has the Markov property if for all x ∈ S and for any pair ti < tj

P(X(tj ) = x(tj ) | X(t) = x(t),∀ t ≤ ti ) = P(X(tj ) = x(tj ) | X(ti ) = x(ti ))

Intuitively: “the future depends on the past only through the present”



Background: continuous-time Markov chain

Example

X (t) = number of goals that a given soccer player scores by time t
(time played in official matches)

{X (t), t ≥ 0} is a continuous-time Markov chains

Why?

1. state space:
S = {0,1,2, . . . ,A}
A = total number of goals scored during the career

2. the time is continuous:
[0,B]
B = time of retirement

3. the process {X (t), t ≥ 0} has the Markov property



Background: continuous-time Markov chain

Example

X (t) = number of goals that a given soccer player scores by time t
(time played in official matches)

{X (t), t ≥ 0} is a continuous-time Markov chains

Why?

1. state space:
S = {0,1,2, . . . ,A}
A = total number of goals scored during the career

2. the time is continuous:
[0,B]
B = time of retirement

3. the process {X (t), t ≥ 0} has the Markov property



Background: continuous-time Markov chain

Example

X (t) = number of goals that a given soccer player scores by time t
(time played in official matches)

{X (t), t ≥ 0} is a continuous-time Markov chains

Why?

1. state space:
S = {0,1,2, . . . ,A}
A = total number of goals scored during the career

2. the time is continuous:
[0,B]
B = time of retirement

3. the process {X (t), t ≥ 0} has the Markov property



Background: continuous-time Markov chain

Example

X (t) = number of goals that a given soccer player scores by time t
(time played in official matches)

{X (t), t ≥ 0} is a continuous-time Markov chains

Why?

1. state space:
S = {0,1,2, . . . ,A}
A = total number of goals scored during the career

2. the time is continuous:
[0,B]
B = time of retirement

3. the process {X (t), t ≥ 0} has the Markov property



Background: Markov property



Background: Markov property



Background: Markov property



Background: describing a continuous-time Markov chain

We can decompose the process in a series of step defined by:
I the time there is a change
I the new state of the chain
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Background: describing a continuous-time Markov chain

Holding time

Ti = amount of time the chain spends in state i

It is assumed that Ti is exponentially distributed with p.d.f.

ϕT (t) = λi e−λi t , λi > 0, t > 0

where λi is called rate parameter

Why?

The Exponential r.v. has the memoryless property

P(T > s + t | T > t) = P(T > s) ∀ s, t > 0



Background: describing a continuous-time Markov chain
Jump chain
Let s = |S|. The jump chain is described by a jump matrix

P =

 p11 p12 . . . p1s
p21 p22 . . . p2s
. . . . . . . . . . . .
ps1 ps2 . . . pss


where

pij = P(X(t′) = j|X(t) = i , the opportunity to leave i) pij ≥ 0
∑
j∈S

pij = 1

Example

P =

 0.1 0 0.6 0.3
0.8 0.1 0.1 0

0.05 0.5 0.05 0.4
0.6 0.1 0.15 0.15
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Stochastic Actor Oriented Models (SAOMs)

I Family of models

I Developed by T. Snijders in 1996
I non-reflexive directed ties
I ties have a tendency to endure over time (not event!!!)
I several extensions during the past two decades

Snijders, van de Bunt, and Steglich,
Introduction to stochastic actor-based models for network dynamics. Social
Networks 32(1):44-60, 2010.

I Aim: describe the evolution of a network over time

I Network evolution is the outcome of a
continuous-time Markov chain
ties are formed as a reaction to the existence of other ties



Model definition: continuous-time Markov chain
Finite state space

X is the set of all possible adjacency matrices defined on N

|X|= 2n(n−1)

Example
1

2

3

4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

2

3

4

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

2

3

4

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

1

2

3

4

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



Model definition: continuous-time Markov chain
Continuous-time process

1

2

3

4

1

2

3

4

t0 t1
1

2

3

4 ...
1

2

3

4 ...
1

2

3

4

Latent process
the network evolves in continuous-time but
we observed it only at discrete time points
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Model definition: continuous-time Markov chain
Markov property

The current state of the network determines probabilistically
its further evolution

I Given the current network (x) what is the next network (x ′)?

1

2

3

4 ??? |X|= 2n(n−1) possibilities

too many!!!

I The model is actor-oriented
I Opportunity to change

at any given moment t one actor has the opportunity to change
I Absence of co-occurrence

no more than one tie can change at any given moment t
I Actor’s decision

change in ties are made by the actor who sends the ties



Model definition: continuous-time Markov chain
Decision process

1

2

3

4

0 0 0 1
0 0 0 1
0 1 0 0
0 1 0 0

x=current state

1

2

3

4

0 1 0 1
0 0 0 1
0 1 0 0
0 1 0 0

1

2

3

4

0 0 1 1
0 0 0 1
0 1 0 0
0 1 0 0

1

x(1 ; 2) x(1 ; 3)

x(1 ; 4)x(1 ; 1)1

2

3

4

0 0 0 1
0 0 0 1
0 1 0 0
0 1 0 0

1

2

3

4

0 0 0 0
0 0 0 1
0 1 0 0
0 1 0 0

Notation:
x(i ; j) denotes the network x where the tie from i to j is turned into its opposite
x(i ; i) means that i does not change any of his outgoing ties
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Model definition: continuous-time Markov chain
Trajectory

1

2

3

4

opportunity
for actor 1

1

2

3

4

opportunity
for actor 3

1

2

3

4

opportunity
for actor 2

1

2

3

4

opportunity
for actor 2

1

2

3

4

opportunity
for actor 2

opportunity
for actor ...

Jump chain

Holding time



Model definition: continuous-time Markov chain

The evolution process can be decomposed into micro-steps

Micro-step Continuous-time Markov chain
the time at which i
had the opportunity to change

the waiting time until the next op-
portunity for a change
made by an actor i
(holding time)

the precise change i made the probability of changing xij
given that i is allowed to change
(jump chain)



Model definition: continuous-time Markov chain
Holding times: rate function

The waiting time between opportunities of change for an actor i is
exponentially distributed with parameter λi

λi is called rate function

I Simplest specification:
all actors have the same rate of change λ

P(i has the opportunity of change) = λ

λn = 1
n ∀i ∈N

I More complex specification:
actors may change their ties at different frequencies λi (α,x ,w)

P(i has the opportunity of change) = λi (α,x ,w)
n∑

j=1
λj (α,x ,w)



Model definition: continuous-time Markov chain
Holding times: rate function

In the following we assume that:

I all actors have the same rate of change

=⇒ λ is constant over the actors

I the frequencies at which actors have the opportunity to make a
change depends on time

=⇒ λ is not constant over time



Model definition: continuous-time Markov chain
Jump matrix

1

2

3

4

0 0 0 1
0 0 0 1
0 1 0 0
0 1 0 0

x=current state

0 1 0 1
0 0 0 1
0 1 0 0
0 1 0 0

x(1 ; 2) p12 > 0

0 0 1 1
0 0 0 1
0 1 0 0
0 1 0 0

x(1 ; 3) p13 > 0

0 0 0 0
0 0 0 1
0 1 0 0
0 1 0 0

x(1 ; 4) p14 > 0

0 0 0 1
0 0 0 1
0 1 0 0
0 1 0 0

x(1 ; 1) p11 > 0

0 0 1 1
0 0 0 1
0 0 0 0
0 1 0 0

0 0 1 1
0 0 1 0
0 1 0 0
0 1 0 0

P(other) = 0
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Model definition: continuous-time Markov chain
Jump matrix
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3
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Background: random utility model

Setting
decision makers who face a choice between N-alternatives

Notation:
I i denotes the decision maker
I J = {1, . . . , j, . . . ,N} choice set

J is exhaustive and choices are mutually exclusive

Assumption
the decision makers obtain a certain level of profit from each alternative.
The profit is modeled by the utility function Uij : J → R

Decision rule
i chooses the alternative j that assures him the highest profit, i.e.

j : maxj∈J Uij



Background: random utility model
I The researcher does not completely know the decision maker’s utility.

Therefore, the utility function is decomposed as

Uij = Fij +Eij

I Fij is the deterministic part of the utility (observed!)

Fij =
∑

a
γavi +

∑
b

δbcj

- vi variables characterizing the decision maker i
- cj variables characterizing the choice j

I Eij : random term with Gumbel distribution (not observed!)
The random term are independent and identically distributed

I The probability that i chooses the alternative j is given by

pij = P(Uij > Uih, ∀ h ∈ J) = eFij

N∑
h=1

eFih



Model definition: continuous-time Markov chain
Jump matrix: evaluation function

I Actors change their ties in order to maximize a utility function

ui (β,x(i ; j),w) = fi (β,x(i ; j),w) +Eij

I fi (β,x(i ; j),w) is the evaluation function
I Eij is random term (distributed as a Gumbel r.v.)

I The probability that i changes his outgoing tie towards j is:

pij = exp (fi (β,x(i ; j),w)))
n∑

h=1
exp (fi (β,x(i ; h),w))

I Probability interpretation:
I pij is the probability that i changes the tie towards j
I pii is the probability of not changing



Model definition: continuous-time Markov chain
Jump matrix: evaluation function

The evaluation function is defined as a linear combination

fi (β,x(i ; j),w) =
K∑

k=1
βk sik (x(i ; j),w)

I sik (x(i ; j),w) is called statistic
I βk ∈ R is a statistical parameter

N.b.
In the following, we will write:

- x ′ instead of x(i ; j)
- sik (x ′,w) instead of sik (x(i ; j),w)

to simplify the notation
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Evaluation function specification

Endogenous statistics = dependent on the network structures

I Outdegree statistic

si out(x ′) =
∑

j
x ′ij i

I Reciprocity statistic

si rec (x ′) =
∑

j
x ′ij x ′ji i
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Evaluation function specification

Exogenous statistics = related to actor’s attributes

Examples

I Friendship among pupils:
I Smoking: non, occasional, regular
I Gender: boys, girls

I Trade/Trust (Alliances) among countries:
I Geographical area: Europe, Asia, North-America,...
I Worlds: First, Second, Third, Fourth

I Giving advice among employees:
I seniority
I office membership



Evaluation function specification
Exogenous statistics (individual covariate)

I Covariate-ego statistic

si cego(x ′,w) = wi
∑

j
x ′ij i i

I Covariate-alter statistic

si calt(x ′,v) =
∑

j
x ′ij wj i i
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Evaluation function specification
Exogenous statistics (dyadic covariate)

I Covariate-related similarity statistic

si csim(x ′,w) =
∑

j
x ′ij
(

1− |wi −wj |
RW

)
i

where RW is the range of W and
(

1− |wi−wj |
RW

)
is called similarity

score

Remark:
when W is a binary covariate, the covariate-related similarity can be written in
the following way:

si csim(x ′,w) =
∑

j
x ′ij I
{

wi = wj
}
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Evaluation function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

1
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3

4
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i → j
i
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1 → 1
1 → 2
1 → 3
1 → 4
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Evaluation function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

1

2

3

4

si out si rec si trans

i → j
i

i i

1 → 1 2 1 1
1 → 2 1 0 0
1 → 3 3 1 3
1 → 4 1 1 0



Evaluation function specification

Example

βout =−1 βrec = +0.5 βtrans =−0.25

1

2

3

4

si out si rec si trans

i → j
i

i i

1 → 1 2 1 1 -1.75
1 → 2 1 0 0 -1.00
1 → 3 3 1 3 -3.25
1 → 4 1 1 0 -0.50

p11 = 0.146 p12 = 0.310 p13 = 0.033 p14 = 0.511
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Example
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SAOM definition: summary
Model assumptions:

1. Ties have a tendency to endure over time

2. The evolution process is a continuous-time Markov chain

2.1 Waiting time:
exponentially distributed with parameter λ

I constant over the actors
I period dependent

i.e. M + 1 observations =⇒ λ1, · · ·λM



SAOM definition: summary
Model assumptions:

1. Ties have a tendency to endure over time

2. The evolution process is a continuous-time Markov chain

2.2 Jump chain
I At any given moment t one actor has the opportunity

to change one of his outgoing ties
I Actors change their ties in order to maximize a utility function

ui (β,x(i ; j)) = fi (β,x(i ; j),w) +Eij

The probability that i changes his outgoing tie towards j is:

pij = exp (fi (β,x(i ; j),w)))
n∑

h=1
exp (fi (β,x(i ; h),w))

I The parameters β1, . . . ,βk are constant over actors and time



SAOM definition: consequences

I Markov property
I The future configuration of the network depend solely on the current

configuration of the network

I At any given moment t one actor has the opportunity
to change one of his outgoing ties

I Simultaneous changes are not allowed

I Actors change their ties in order to maximize a utility function

ui (β,x(i ; j)) = fi (β,x(i ; j),w) +Eij

I To compute the evaluation function actors should have full knowledge
of the network (existing ties, actors and their attribute)

I All the actors use the same evaluation function



Evaluation function specification

Which statistics must be included in the evaluation function?

Outdegree and Reciprocity must always be included.
The choice of the other statistics must be determined according
to hypotheses derived from theory

Example
Friendship network

Theory Statistics
the friend of my friend ⇒ transitive effect
is also my friend
girls trust girls ⇒ covariate-related
boys trust boys similarity
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Simulating network evolution

Aim: given x(t0) and fixed parameter values, provide x sim(t1)
according to the process behind the SAOM

⇓

produce a possible series of micro-steps between t0 and t1

Input

x(t0) = network at time t0

λ = rate parameter
β = (β1, . . . ,βk ) = evaluation function parameters

Output

x sim(t1) = network at time t1



Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
t = time
dt = holding time between consecutive op-
portunities to change
∼ = generated from

bla bla
bla bla

1

2

3

4

n = 4

λ= 1.5

β = (βout ,βrec ,βtrans )
βi=(-1,0.5,-0.25)



Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
t = time
dt = holding time between consecutive op-
portunities to change
∼ = generated from

bla bla
bla bla

Generate the time elapsed
between t0 and the first
opportunity for a change

The more intuitive way to gen-
erate dt is:

- generate the waiting
time for each actor i

ti ∼ Exp(λ)

- dt = min
1≤i≤n

{ti}

determines both the
time and the actor who
gets the opportunity for
a change.

But this requires the genera-
tion of n numbers...



Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
t = time
dt = holding time between consecutive op-
portunities to change
∼ = generated from

bla
bla
bla
bla

Generate the time elapsed be-
tween t0 and the first oppor-
tunity for a change

To avoid the generation of n num-
bers, we use the following result:
If

Ti ∼ Exp(λi ), 1≤ i ≤ n

and T1, . . . ,Tn are mutually inde-
pendent, then

DT = min{T1, . . . ,Tn} ∼

Exp(
n∑

i=1
λi )

e.g. dt = 0.0027



Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
t = time
dt = holding time between consecutive op-
portunities to change
∼ = generated from

bla
bla
bla
bla

Select the actor i who has
the opportunity to change

e.g. i = 1

1

2

3

4



Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
t = time
dt = holding time between consecutive op-
portunities to change
∼ = generated from

bla
bla
bla
bla

Select j , the actor towards i is
going to change his outgoing
tie

i → j fi pij

1 → 1 -1.75 0.15
1 → 2 -1.00 0.31
1 → 3 -3.25 0.03
1 → 4 -0.5 0.51



Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
t = time
dt = holding time between consecutive op-
portunities to change
∼ = generated from

bla
bla
bla
bla

Select j , the actor towards i is
going to change his outgoing
tie

e.g. j = 4

1

2

3

4
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Algorithm: Network evolution
Input: x(t0), λ, β, n
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Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
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x sim(t1)← x
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Simulating network evolution
Algorithm: Network evolution
Input: x(t0), λ, β, n
Output: x sim(t1)
t← 0
x ← x(t0)
while condition = TRUE do

dt ∼ Exp(nλ)
i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
else

x ← x
t← t + dt

x sim(t1)← x
return x sim(t1)
t = time
dt = holding time between consecutive op-
portunities to change
∼ = generated from

bla
bla
bla
bla

e.g. t = 0 + 0.0027



Simulating network evolution

Two different stopping rules:

1. Unconditional simulation:
the simulation of the network evolution carries on until a
predetermined time length has elapsed (usually until t = 1)

2. Conditional simulation on the observed number of changes:
the simulation runs on until

n∑
i,j=1
ı6=j

∣∣∣xobs
ij (t1)− xij (t0)

∣∣∣=
n∑

i,j=1
ı 6=j

∣∣x sim
ij (t1)− xij (t0)

∣∣
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Simulating network evolution

Use of simulations:

- simulate the network evolution between two consecutive time points

N.b.
For simulations of 3 or more waves (M ≥ 2), the simulation for wave
m + 1 starts at the simulated network for wave m.

- provide possible scenarios of the network evolution according to different
values of the parameters

- estimate the parameter of the model

- evaluate the goodness of fit of the model
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Estimating the parameter of the SAOM

Issue

Given

x(t0), x(t1), . . . , x(tM)

and a specification of the SAOM, we want to estimate

θ = (λ1, . . . ,λM ,β1, . . . ,βK )

Most used estimation methods:

1. Method of Moments

2. Maximum-likelihood estimation

These methods are implemented in the library Rsiena



Background: expected value
Definition
Let X be a random variable with probability distribution ϕ(x ;θ)
The expected value (or moment) of X , denoted by Eθ[X ], is:

Eθ[X ] =
∑
x∈S

x ·ϕ(x ,θ)

if X is discrete and
Eθ[X ] =

∫
x∈S

x ·ϕ(x ,θ)dx

if X is continuous

Let (x1, . . . , xq) a sample of q observations from the r.v. X .
The sample counterpart of Eθ[X ], denoted by µ, is defined by:

µ= 1
q

q∑
i=1

xi



Background: Method of Moments (MoM)

Definition
The method of moment estimate for θ is the value θ̂ such that

Eθ[X ] = µ

In practice, to compute θ̂

1. Compute the expected value Eθ[X ]

2. Compute the sample counterpart µ= 1
q

q∑
i=1

xi

3. Solve the moment equation Eθ[X ] = µ for θ

Observation
One can observe that the expected value of a certain distribution usually
depends on the parameter θ



Background: Method of Moments (MoM)

Example

Let T be the r.v. describing the waiting times between two consecutive
opportunities for change for an actor. Therefore,

ϕT (t) = λe−λt λ, t > 0

A sample from T is reported in the following table:

1 2 3 4 5 6 7 8 9 10
ti 0.33 0.08 0.06 0.01 0.04 0.11 0.03 0.18 0.02 0.07

Estimate the rate parameter λ using the MoM



Background: Method of Moments (MoM)

Example

1. Compute the expected value

Eλ[T ] =
+∞∫
0

t ·ϕT (t)dt =
+∞∫
0

t ·λe−λtdt

=
[
−t · e−λt

]+∞

0
−

+∞∫
0

−e−λtdt

︸ ︷︷ ︸
integration by parts

= 0−
[
− 1
λ

e−λt
]+∞

0
= 1
λ



Background: Method of Moments (MoM)
Example

1 2 3 4 5 6 7 8 9 10
ti 0.33 0.08 0.06 0.01 0.04 0.11 0.03 0.18 0.02 0.07

2. Compute the sample counterpart:

µ= 1
10

10∑
i=1

ti = 0.93
10 = 0.093

3. The estimate for λ is the solution of:

Eλ[T ] = µ

1
λ

= µ

3. and namely
λ̂= 1

µ
= 1

0.093 = 10.75



Background: Method of Moments (MoM)
The principle of the MoM can be generalized to any function s : S 7−→ R.

1. Expected value of s(X ):

Eθ[s(X )] =
∑
x∈S

s(x)ϕ(x ,θ)

Eθ[s(X )] =
∫

x∈S

s(x)ϕ(x ,θ)dx

2. Corresponding sample moment:

µ= 1
q

q∑
i=1

s(xi )

3. Moment equation:
Eθ[s(X )] = γ

The functions s(X ) are called statistics



Background: Method of Moments (MoM)

The MoM can be applied also in situations where θ = (θ1, . . . , θp).

1. Definition of p statistics (s1(X ), . . . , sp(X ))

2. Definition of p moment conditions:

Eθ[s1(X )] = µ1

Eθ[s2(X )] = µ2

· · ·
Eθ[sp(X )] = µp

3. Solving the resulting equations for the unknown parameters



Estimating the parameter of the SAOM using MoM

Aim: estimate θ using the MoM

θ = (λ1, . . . , λM , β1, . . . , βK ), θ ∈ RP , P = M + K

In practice:

1. find P statistics s(X ) = (s1(X ), . . . ,sp(X ))
i.e. P variables that can be calculated from the network

2. set the expected value of s(X ) equal to its sample counterpart s(x)

Eθ[s(X )] = s(x)

3. solve the resulting system of equations with respect to θ.

For simplicity, let us assume to have observed a network at two time points t0
and t1 and to condition the estimation on the first observation x(t0)
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1. Defining the statistics

The statistics s(X ) must be sensitive to the parameter θ in the sense that

∂Eθ(sp(x))
∂θp

> 0

I Rate function:
I λ models the frequency at which actors get opportunities for change
I higher λ =⇒ higher number of changes between t0 and t1

I a relevant statistic for λ is

sλ(X(t1),X(t0)|X(t0) = x(t0)) =
n∑

i,j=1

∣∣Xij (t1)−Xij (t0)
∣∣



1. Defining the statistics

I Evaluation function:

for the parameter βk in

fi (β,x(i ; j),w) =
K∑

k=1
βk sik (x(i ; j),w)

I higher βk means that all actors strive more strongly after a high
value of sik (x)

I this leads to the statistic

sk (X(t1)|X(t0) = x(t0)) =
n∑

i=1
sik (X(t1))

N.b. for convenience the arguments of the statistics will be omitted so that the
statistics will be simply denoted as Sλ = sλ(X(t1),X(t0)) and Sk = sk (X(t1))



2. Setting the moment equations

The moment estimation is based on the vector of statistics

S = (Sλ,S1, . . . ,SK )

Denote by s the observed value of S, the moment estimate of θ is the
value θ̂ for which the expected value of the statistic is equal to the
observed value

Eθ[S] = s

or equivalently

Eθ[S− s] = 0



3. Solving the moment equation

The moment equation
Eθ[S] = s

cannot be solved by analytical or the usual numerical procedures, because

Eθ[S]

cannot be calculated explicitly.

However, the solution can be approximated by the
Robbins-Monro (1951) method for stochastic approximation
an iterative stochastic algorithm that attempt to find zeros of functions which
cannot be analytically computed



3. Solving the moment equations
Stochastic approximation method

Given an initial guess θ0 for the parameter θ, the procedure can be
roughly depicted as follows:

θ0
approximation−−−−−−−−→ Eθ0 [S− s] update−−−−→ θ1

θ1
approximation−−−−−−−−→ Eθ1 [S− s] update−−−−→ θ2

...
approximation−−−−−−−−→ ...

update−−−−→ ...

θi−1
approximation−−−−−−−−→ Eθi−1 [S− s] update−−−−→ θi

...
approximation−−−−−−−−→ ...

update−−−−→ ...

until a certain criterion is satisfied



3. Solving the moment equations
Approximation: Monte Carlo method

1. Given x(t0) and θi , we simulate the network evolution q times

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)

2. For each sequence compute the value S(l) taken by S (l = 1, . . . ,n)

3. Approximate the expected value by

S = 1
q

q∑
l=1

S(l)→ Eθ[S]

when q −→∞
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3. Solving the moment equations
Approximation: Monte Carlo method

Example

1. Given:

- x(t0)

- θ = (λ1 = 10.69,λ2 = 8.82,βout =−2.63,βrec = 2.17,βtrans = 0.46)

simulate the network evolution q = 1000 times

x (1)(t1), x (1)(t2), . . . , x (1)(tM)

. . .

x (q)(t1), x (q)(t2), . . . , x (q)(tM)



3. Solving the moment equations
Approximation: Monte Carlo Method

Example

2. Compute the value assumed by Sout for each sequence of networks

S(l)
out =

M∑
m=1

n∑
i=1

n∑
j=1

x (l)
ij (tm)

sim 1 2 3 4 5 6 7 8 . . .

Nr. Edges 942 874 1047 881 865 866 999 948 . . .



3. Solving the moment equations
Approximation: Monte Carlo Method

Example

3. Approximate the expected value by

Sout = 1
q

q∑
i=1

S(l)
out

Sout = 942 + 874 + 1047 + 881 + 865 + 866 + 999 + 948 + . . .

1000 ≈ 912



3. Solving the moment equations
Updating rule: the Robbins-Monro (RM) algorithm

Iterative algorithm to find the solution to

Eθ[S] = s

The value of θ is iteratively updated according to:

θ̂i+1 = θ̂i −ai D̂−1 (Si − s)

where:
I ai is a series such that

lim
i→∞

ai = 0
∞∑

i=1
ai =∞

∞∑
i=1

a2
i <∞

I D̂ is a diagonal matrix with elements

D̂ = ∂

∂θ̂i
E
θ̂i

[S]



3. Solving the moment equations
Updating rule: the RM algorithm

Intuitively:
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3. Solving the moment equations
Convergence criterion

The algorithm runs for a preset number of iterations, after which
convergence is assessed

given θ̂, determine how close we are to Eθ[S] = s

The way to measure this is to use the “t-rations for convergence”

tconvk = SNk − sk
s.d .(S1k , . . . ,S1N)

where
I (S1k , . . . ,S1N) the values assumed by the statistics Sk given N

simulation from a SAOM specified by θ̂
I SNk is the mean of these values

Criterion: max
k
{|tconvk |} ≤ 0.1



3. Solving the moment equations
Convergence criterion

A better criterion recently implemented is to use the maximum t-ratio for
convergence for any linear combination of the parameters

tconv .max = max
b

{
b′(SN − s)√

b′Σb

}
where Σ = Ĉov(S) is the covariance matrix of S.

This corresponds to

max
b

{
b′(SN − s)√

b′Σb

}
= (SN − s)′Σ−1(SN − s)

The current rule is:

tconv .max ≤ 0.25 and max
k
{|tconvk |} ≤ 0.1



Generalizing to M periods

I Rate function statistics

sλ1 (X (t1),X (t0)|X (t0) = x(t0)) =
n∑

i,j=1
|Xij (t1)−Xij (t0)|

. . .

sλM (X (tM),X (tM−1)|X (tM−1) = x(tM−1)) =
n∑

i,j=1
|Xij (tM)−Xij (tM−1)|

I Evaluation function statistics
M∑

m=1
smk (X (tm)|X (tm−1) = x(tm−1)) =

M∑
m=1

smk (X (tm))



Estimating the parameter of the SAOM

Issue

Given

x(t0), x(t1), . . . , x(tM)

and a specification of the SAOM, we want to estimate

θ = (λ1, . . . ,λM ,β1, . . . ,βK )

Most used estimation methods:

1. Method of Moments

2. Maximum-likelihood estimation

These methods are implemented in the library Rsiena



Background: the Maximum-likelihood estimation (MLE)

Definition

Suppose that X is a r.v. with probability distribution ϕ(x ,θ), θ ∈Θ⊂Rk .
Let x = (x1,x2, . . . ,xq) be the observed value of a random sample

The likelihood function associated with the observed data is:

L(θ) : Θ→ R; θ 7−→ Pθ(x1, . . . ,xq)

defined as:

L(θ) =
q∏

i=1
ϕ(xi ,θ)

A parameter vector θ̂ maximizing L:

θ̂ = arg max
θ∈Θ

L(θ)

is called a maximum likelihood estimate for θ



Background: the Maximum-likelihood estimation (MLE)

In practice, it is easier to compute θ̂ using the log-likelihood function,
i.e. log(L(θ))

θ̂ = arg max
θ∈Θ

log(L(θ))

N.b.

The logarithm is a monotonic increasing function



Background: the Maximum-likelihood estimation (MLE)

Example

Let T be the r.v. describing the waiting times between two consecutive
opportunities for change for an actor. Therefore,

ϕT (t) = λe−λt λ, t > 0

A sample from T is reported in the following table:

1 2 3 4 5 6 7 8 9 10
ti 0.33 0.08 0.06 0.01 0.04 0.11 0.03 0.18 0.02 0.07

Estimate the rate parameter λ according to the MLE.



Background: the Maximum-likelihood estimation (MLE)

Example

Finding an estimate for θ requires:
1. computing the (log-)likelihood of the evolution process
2. maximizing the (log-)likelihood

1. Computing the likelihood

L(λ) =
q∏

i=1
fT (ti ,λ) =

q∏
i=1

λe−λti = λqe
−λ

q∑
i=1

ti

log(L(λ)) = log

λqe
−λ

q∑
i=1

ti

= q · log(λ)−λ
q∑

i=1
ti



Background: the Maximum-likelihood estimation (MLE)

Example

2. Maximizing the (log-)likelihood

∂

∂λ
log(L(λ)) = 0

q
λ
−

q∑
i=1

ti = 0 =⇒

λ = q
q∑

i=1
ti

(stationary point)

Checking that this stationary point is a maximum

∂2

∂λ2 log(L(λ)) =− q
λ2 < 0

Therefore, λ̂= 10.75



1. Computing the (log-)likelihood of the evolution process
For semplicity, let us consider only two observations x(t0) and x(t1)

The model assumptions allow to decompose the process in a series of
micro-steps:

{(Tr , ir , jr ), r = 1, . . . ,R}

I Tr : time point for an opportunity for change,
I ir : actor who has the opportunity to change
I jr : actor towards whom the tie is changed

Given the sequence {(Tr , ir , jr ), r = 1, . . . ,R}, the likelihood of the
evolution process

logL(θ) = log
( R∏

r=1
Pθ((Tr , ir , jr ))

)
∝ log

(
(nλ)R

R! e−nλ
R∏

r=1

1
n pir jr (β,x(Tr ))

)



2. Maximizing the (log-)likelihood

Problem:
we cannot observe the complete data, i.e., the complete series of
micro-steps that lead from x(t0) to x(t1), from x(t1) to x(t2), . . .

⇓
we cannot compute the L of the observed data

⇓
a stochastic approximation method must be applied.



2. Maximizing the (log-)likelihood
Stochastic approximation method

Given an initial guess θ0 for the parameter θ, the procedure can be
roughly depicted as follows:

θ0
approximation−−−−−−−−→ ∂

∂θ log(L(θ0)) update−−−−→ θ1

θ1
approximation−−−−−−−−→ ∂

∂θ log(L(θ1)) update−−−−→ θ2

...
approximation−−−−−−−−→ ...

update−−−−→ ...

θi−1
approximation−−−−−−−−→ ∂

∂θ log(L(θi−1)) update−−−−→ θi

...
approximation−−−−−−−−→ ...

update−−−−→ ...

until a certain criterion is satisfied



2. Maximizing the (log-)likelihood
Stochastic approximation method

Approximation: augmented data method

Definition
The augmented data (or sample path) consist of the sequence of tie
changes that brings the network from x(t0) to x(t1)

(i1, j1), . . . ,(iR , jR )

Formally:
v = {(i1, j1), . . . ,(iR , jR )} ∈ V

where V is the set of all sample paths connecting x(t0) and x(t1).

We can approximate the (log-)likelihood function of the observed data
using the probability of v

logP(v |x(t0),x(t1))∝ log
(

(nλ)R

R! e−nλ
R∏

r=1

1
n pir jr (β,x(Tr ))

)
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2. Maximizing the (log-)likelihood
Stochastic approximation method

Updating rule
We would like to solve the equation:

∂

∂θ
log(L(θ)) = 0

Given θ̂i and the corresponding approximation of the score function:

∂

∂θ
log(L(θ̂i ;v (i)

m ))

we update the parameter estimate using the Robbins-Monro step

θi+1 = θi + ai D−1 ∂

∂θ
log(L(θ̂i ;v (i)

m ))

where D is a diagonal matrix with elements

D−1 =
[
∂2

∂θ2 log(L(θ̂i ;v (i)
m ))

]−1
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Parameter interpretation

The procedures for estimating the parameters of the SAOM are
implemented in a R library called RSiena

(SIENA = Simulation Investigation for Empirical Network Analysis)

The Rscript estimation1516.R contains the R commands to implement
the estimation procedure in R and the folder “hp.zip” includes the data
files.

Example data:
I support network of 64 Characters of Harry Potter books
I network evolution between book 2 and book 3
I attributes

I gender (1=male, 2=female)
I schoolyear (when did the student come to Hogwarts?)
I house (1=Gryffindor, 2= Hufflepuff, 3=Ravenclaw, 4=Slytherin)



Parameter interpretation

I Rate function: average number of opportunities for change for each
actor between tm−1 and tm

I Evaluation function: expresses the “attractiveness” of a network
Let:
x the current state of the network
x+ the network x with xij = 1
x− the network x with xij = 0
then the difference in the utility is

u(β,x+)−u(β,x−) =
∑

k
βk (sik (x+)− sik (x−))

I βk > 0: sik (x) is positively evaluated
I βk < 0: sik (x) is negatively evaluated
I βk = 0: sik (x) is not important



Parameter interpretation

Interpreting the parameters of the evaluation function

The parameter βk quantifies the role of the effect sik in the network
evolution.

I βk = 0 sik plays no role in the network dynamics

I βk > 0 higher probability of moving into networks where sik is higher

I βk < 0 higher probability of moving into networks where sik is lower

Which βk are “significantly” different from 0?

E.g. βrec = 0.13 is “significantly” different from 0?



Parameter interpretation: hypothesis test

1. State the hypotheses.

- The null hypothesis: H0 : βk = 0
the observed increase or decrease in the number of network
configurations related to a certain effect results purely from chance

- The alternative hypothesis: H1 : βk 6= 0
the observed increase or decrease in the number of network
configurations related to a certain effect is influenced by some
non-random cause

2. Decision rule: |βk/s.e.(βk )| ≥ 2 reject H0

|βk/s.e.(βk )|< 2 fail to reject H0
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Parameter interpretation: a very simple model

Estimates s.e. t-score Sig.
basic rate parameter support 5.47 1.49 -0.07 *
outdegree (density) -5.40 0.47 -0.01 *
reciprocity 5.44 0.80 -0.08 *
transitive triplets 1.05 0.18 -0.06 *
3-cycles -1.30 0.44 -0.05 *
* the parameter is significantly different from 0

Interpretation:
I rate: about 5 opportunities for changing an outgoing tie
I outdegree: the cost of a tie is higher than its benefit
I reciprocity: peers support is reciprocal
I transitive triplets: if student A supports student B, and student B

supports student C, then student A supports also student C
I 3-cycles: evidence against undirected reciprocation
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Parameter interpretation: a very simple model

In more detail

βout

n∑
j=1

xij +βrec

n∑
j=1

xij xji =−5.40
n∑

j=1
xij + 5.44

n∑
j=1

xij xji

Adding a reciprocated tie (i.e., for which xji = 1) gives

−5.40 + 5.44 = 0.04

while adding a non-reciprocated tie (i.e., for which xji = 0) gives

−5.40

Conclusion: reciprocated ties are valued positively and non-reciprocated
ties are valued negatively by actors



Parameter interpretation: a more complex model

Estimates s.e. t-score Sig.
basic rate parameter support 5.02 1.03 -0.08 *
outdegree (density) -10.04 1.75 0.06 *
reciprocity 3.77 1.26 0.05 *
transitive triplets 0.89 0.26 0.01 *
3-cycles -0.66 0.46 0.02 *
gender alter 0.65 0.66 -0.02
gender ego 0.10 0.56 -0.09
same gender -0.51 0.50 0.05
year alter 0.76 0.24 -0.00 *
year ego -0.01 0.17 -0.01
same year 2.19 0.58 0.08 *
house alter -1.32 1.02 0.03
house ego -0.94 0.85 -0.04
same house 1.88 1.20 0.03 *
* the parameter is significantly different from 0



Parameter interpretation: a more complex model

Interpretation

I rate, outdegree, reciprocity, transitive triplets and 3-cycles as before

I gender has no effect on tie changes

I year:

I alter: the longer students were in Hogwarts, the more support they
receive

I same: students that started studying together are more likely to
support each other

I house: students living in the same house are more likely to support
each other



After Christmas and some holidays
...we might need a recap

Once upon a time, there was the Satochastic Actor-oriented Model
(SAOM)

I Network dynamics, i.e. the evolution of a network over time

I Based on some assumptions
I Continuous-time Markov chain
I actor-oriented perspective
I at any point time only one actor gets the opportunity to make a

change
I the selected actor can change only one of his outgoing ties or do

nothing



Model formulation

The continuous-time Markov chain is decomposed into two sub-processes

I change opportunity process
when the next opportunity for a change takes place
which actor gets the opportunity to change
modeled by the rate function

λ1, . . . ,λM

constant over actors

I change determination process
which action is taken by the selected actor
modeled by the evaluation function

fi (x ,β) =
∑

k

βk sik (x)

β are constant over time and over actors



Creating and terminating ties

Given x(t0) and x(t1) four tie changes are possible:

x(t0) x(t1)

i j i j creation of a tie

i j i j maintenance of a tie

i j i j termination of a tie

i j i j maintenance of a “no-tie”

The evaluation function models the presence of ties regardless they were
created or maintained
...but maintaining (terminating) a tie is not always the opposite of
creating a tie
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Creating and terminating ties

To account for the creation and the termination of ties a more complex
utility function is needed

Next to the evaluation function

1. the creation function ci (δ,x ′,x)

and

2. the endowment function ei (η,x ′,x)

are included in the utility function

ui (x ′) = fi (β,x ′) + ci (δ,x ′,x)︸ ︷︷ ︸
=0 tie termination

+ ei (η,x ′,x)︸ ︷︷ ︸
=0 tie creation

+ εi (t,x ′, j)

where x ′ = x(i ; j)



Creating ties
Creation function

Models the gain in satisfaction incurred when a network tie is created:

ci (δ,x ′) = Inew
∑

a
δasia(x ′)

where

- δa are parameters

- sia(x ′) are the effects whose strength is different in creating and
terminating ties

- Inew is an indicator function

Inew =
{

1 newly created tie
0 otherwise



Creating ties
Parameter interpretation

The utility function for an actor i when he creates a new tie is

ui (x ′) = fi (β,x ′) + ci (δ,x ′) + εi (t,x ′, j)

and the contribution to the utility functions when a tie is created is

fi (β,x ′) + ci (δ,x ′) =
∑

k
βk sik (x ′) + Inew

∑
a
δasia(x ′)

A positive (negative) δa implies that the creation of a tie increasing
sia(x) is more attractive, i.e. the tie is more (less) likely to be created



Terminating a tie
Endowment function

Models the loss in satisfaction incurred when a network tie is deleted

ei (η,x ′) = Ipreexisting
∑

b
ηbsib(x ′)

where

- ηb are parameters

- sib(x ′) are the effects whose strength is different in creating and
terminating ties

- Ipreexisting is an indicator function

Ipreexisting =
{

1 pre-existing tie
0 otherwise



Terminating a tie
Parameter interpretation

The utility function for an actor i when he deletes a tie is

ui (x ′) = fi (β,x ′) + ei (η,x ′) + εi (t,x ′, j)

and the contribution to the utility function when a tie is maintained is In
fact the difference in the utility functions is

fi (β,x ′) + ei (η,x ′) =
∑

k
βk sik (x ′) + Ipreexisting

∑
b
ηbsib(x ′)

A positive (negative) ηb implies that the maintenance of a tie
is more attractive, i.e. the tie is more (less) likely to be maintained



Creating and terminating ties
Remarks

I If (it is assumed that) an effect has the same impact on both tie
creation and tie termination, this effect must be included only in the
evaluation function
a model with only evaluation effects leads to the same network dynamics as a
specification where these effects are turned into creation and endowment effects,
with the same parameters

I An effect can appear as components of one or two of these functions
in a single model, but never in all three

I In practice:
I start modeling with evaluation effects
I specify the endowment and the creation function given

a clear idea about the available data and
how tie creation and endowment may be different
in the analysed data set



Creating and terminating ties
R code

The list of all effects available for a certain data set is provided by

effectsDocumentation(effects = myeff)



Creating and terminating ties
R code

Effects for the creation and the endowment function are specified
using the argument type

I 'rate' = rate function
I 'eval' = evaluation function (default)
I 'creation' = creation function
I 'endow' = endowment function

Example

myeff <- includeEffects(myeff,recip,type='endow')
myeff <- includeEffects(myeff,transTrip,type='creation')

While the reciprocity effect specifies the endowment function, the
transitive triplets effect specifies the creation function



Outline

Introduction
Longitudinal network data
A bit of Statistics

Stochastic actor-oriented models
Model definition
Model specification
Simulating the network evolution
Parameter Estimation
Parameter interpretation
Goodness of fit
Non-directed relations
ERGMs and SAOMs

Modelling the co-evolution of networks and behavior
Motivation: selection and influence
Model definition and specification
Simulating the co-evolution of networks and behavior
Parameter estimation
Increasing and decreasing the level of a behavior, gof
ERGMs



Goodness of fit
Evaluate the performance of SAOMs

Analysis of the network evolution:

1. Specification of the model:
Which effects should be used to specify the rate and the evaluation
functions?

2. Estimation of the parameters of the model:
using the software

3. Interpretation of the results:
What can be concluded about the network evolution?

Fundamental questions before “selling” our results are:
Is the specified model a “good” model? How well is it performing?

As for the ERGMs, we need to analyse the goodness of fit of the model!

gof: goodness of fit



Goodness of fit
Evaluate the performance of SAOMs

When we consider a simple model, e.g. regression analysis, evaluating the
gof is very simple:

1. compute the values of the dependent variables predicted
by the model

2. compare the observed values with the predicted values

poor gof good gof

This can be generalized also to models for longitudinal data ...
but what if the dependent variable is a series of networks?



Goodness of fit
Evaluate the performance of SAOMs

How to compare networks?

Heuristic gof:

1. simulate the series of M networks a large number of times

2. compute the distribution of a statistic that is not directly fitted
by the model
(e.g. the indegree distribution)

3. if the observed value of the statistic is not extreme in the
distribution, then the statistic is well fitted by the model

The statistic that is not directly fitted by the model is called
auxiliary statistic. We will denote it as saux .
Repeating this procedure for several auxiliary statistics
provides information on the gof of the model



Goodness of fit
Evaluate the performance of SAOMs

We need a statistical test to decide if

H0: good gof

should be rejected in favour of

H1: poor gof

Logic of the test:
I we can compare the simulated values of the auxiliary statistics with

the observed values
(e.g. the simulated and the observed indegree distributions)

I if the values are similar our model has a good gof
I if the values are far away than the model has a poor gof



Goodness of fit
Evaluate the performance of SAOMs

Let
I saux = (saux

1 (x), . . . , saux
h (x), . . . , saux

H (x))
the vector of H auxiliary statistics

I saux = (saux
1 (x), . . . , saux

h (x), . . . , saux
H (x))

the Monte Carlo approximation of saux

I sobs = (sobs
1 (x), . . . , sobs

h (x), . . . , sobs
H (x))

the observed values of the auxiliary statistics

The test statistic is

D =
√(

saux
h − sobs

h
)′ (Σsaux )−1

(
saux

h − sobs
h
)

where Σsaux is the covariace matrix of the auxiliary statistics.
D is the Mahalanobis distance between the observed and the approximated values of
the auxiliary statistics



Goodness of fit
Evaluate the performance of SAOMs

The test statistic is

D =
√(

saux
h − sobs

h
)′ (Σsaux )−1

(
saux

h − sobs
h
)
∼ χ2

h

where Σsaux is the covariace matrix of the auxiliary statistics

Interpretation:
I higher values of D (p-values<0.05) provides evidence against H0

I lower values of D (p-values>0.05) provides evidence to H0



Goodness of fit
Auxiliary statistics

I Outdegree distribution
The vector of statistics AO(x) = (AO1(x),AO2(x), . . .) containing
elements

AOc (x) =
∑

j
I{
∑

k xjk =c}

These elements count the number of nodes with c outgoing ties.

While outdegree is modeled explicitly by virtually all SAOM models used in
practice, the cumulative distribution can have many different shapes. For
example, MoM estimation will only match the statistic for the number of ties; a
good fit for aggregate density does not imply that the distribution of outdegree
counts matches well.



Goodness of fit
Auxiliary statistics

I Indegree distribution
The vector of statistics AI (x) = (AI1(x),AI2(x), . . .) containing
elements

AIc (x) =
∑

j
I{
∑

k xkj =c}

These elements count the number of nodes with c incoming ties.

The interpretation of this term for goodness of fit is analogous with the
outdegree distribution.



Goodness of fit
Auxiliary statistics

I Geodesic distance
Let Gij (x) be the geodesic distance (i.e. the length of the shortest
path) between nodes i and j in the graph. The vector of statistics
AG (x) = (AG1(x),AG2(x), . . .) containing elements

AGc (x) =
∑

j
I{Gij (x)=c}

These elements count the number of dyads with geodesic distance
equal to c.

Geodesic distance is an important emergent property of social networks which
can be regarded as a rough measure of, e.g. how quickly ideas and norms can
spread.



Goodness of fit
Auxiliary statistics: triad census

003 012 102 021D 021U 021C 111D 111U

030T 030C 201 120D 120U 120C 210 300

I M,A,N: mutual, asymmetric, null dyads

I U, D, T, C: up, down, transitive, cyclic

I 030T, 120D, 120U, 300: non-vacuously transitive
(whenever i → j, j→ k implies i → k)

I 021C, 111D, 111U,030C, 201, 120C, 210: intransitive

I 003, 012, 102, 021D, 021U: vacuously transitive
(there is no (i , j,k) for which i → j and i → k, neither transitive nor intransitive)



Goodness of fit
Auxiliary statistics: triad census

003 012 102 021D 021U 021C 111D 111U

030T 030C 201 120D 120U 120C 210 300

The triad count will help to assess whether the nuances of network closure (i.e.
transitivity) is accurately represented by the fitted model.
Any subset of these triad counts, e.g. only the transitive triads, could be selected for a
goodness of fit criteria.



Goodness of fit
Evaluate the performance of SAOMs: an example

I s50 data:
an excerpt of the data and part of “Teenage Friends and Lyfestyle
Study” available at
http://www.stats.ox.ac.uk/˜snijders/siena/

I 3 observations of a cohort of pupils in a Scottish school
over a 3 year period

I actors: 50 girls
I relation: friendship
I SAOM: edges, reciprocity, transitive triplets
I gof is evaluated with the sienaGOF function

see the R script “gof.R” on the webapge of the course

http://www.stats.ox.ac.uk/~snijders/siena/


Goodness of fit
Evaluate the performance of the SAOM: an example

For each auxiliary statistic the sienaGOF allows to analyse the gof of a
SAOM using two instruments

I statistical test
based on Mahalanobis distance

I violin plots:
box-plot+density plot



Goodness of fit
Evaluate the performance of SAOMs: an example

Goodness of Fit of IndegreeDistribution

p: 0.455
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Goodness of fit
Evaluate the performance of SAOMs: an example

Goodness of Fit of OutdegreeDistribution

p: 0.281
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Goodness of fit
Evaluate the performance of SAOMs: an example

Goodness of Fit of GeodesicDistribution
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Goodness of fit
Evaluate the performance of SAOMs: an example

Goodness of Fit of TriadCensus

p: 0.006
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Goodness of fit
Evaluate the performance of SAOMs: an example

The previous graphs show:
I good fit for the indegree and the outdegree distribution
I poor fit for the geodesic distance and the triadic census

Why do we get a poor fit?

1. The model is missspecified
(i.e. not all the statistics explaining the network evolution are included)

2. Some assumptions of the SAOM are not valid
(e.g. there is time heterogeneity)



Model specification
How to specify SAOMs?

I Theory should always guide model selection,
but a data driven approach can also help!

I It is recommended to use a forward approach
I start from a simple model
I include more complex effect step-by-step

We follow this approach in order to improve the gof of the SAOM
for the s50 data



Model specification
How to specify SAOMs?

a) Theory guided approach
I the tendency to transitive closure might depend less strongly on the

number of indirect connections than represented by the transitive
triplets effect. Good alternatives might be:

I the transitive ties effect
I the geometrically weighted edgewise shared partner effect

I 3-cycle effect may be important as an inverse indication of local
hierarchy

I the interaction between reciprocity and transitivity may be important

As an example, we specify a model including the statistics corresponding
to these effects
(apart from the geometrically weighted edgewise shared partner effect)



Model specification
How to specify SAOMs?

Goodness of Fit of IndegreeDistribution

p: 0.226
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Model specification
How to specify SAOMs?

Goodness of Fit of OutdegreeDistribution

p: 0.199
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Model specification
How to specify SAOMs?

Goodness of Fit of GeodesicDistribution

p: 0
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Model specification
How to specify SAOMs?

Goodness of Fit of TriadCensus

p: 0.064
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Model specification
How to specify SAOMs?

b) Data driven approach
I We need also effects to improve the outdegree distribution

e.g. outdegree activity and outdegree popularity
(and these effects are also supported by theory...data driven
approach could help us if we have forgotten something)

We include them in the previous model



Model specification
How to specify SAOMs?

Goodness of Fit of IndegreeDistribution

p: 0.594
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Model specification
How to specify SAOMs?

Goodness of Fit of OutdegreeDistribution

p: 0.638
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Model specification
How to specify SAOMs?

Goodness of Fit of GeodesicDistribution

p: 0.025
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Model specification
How to specify SAOMs?

Goodness of Fit of TriadCensus

p: 0.934
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Goodness of fit
Evaluate the performance of the SAOM: an example

The previous graphs show that:
I good fit for the indegree and the outdegree distribution
I poor fit for the geodesic distance and the triadic census

Why do we get a poor fit?

1. The model is missspecified
(i.e. not all the statistics explaining the network evolution are included)

2. Some assumptions of the SAOM are not valid
(e.g. there is time heterogeneity)



Time heterogeneity
Are the parameters of the evaluation function constant over time?

Why do we usually neglect time heterogeneity?
I onerous and time consuming (including more parameters when time

heterogeneity is not part of the research question)

I it is unknown under which circumstances omitting time
heterogeneity leads to erroneous conclusions

Consequences of neglecting time heterogeneity in SAOMs:
I Estimates that average over heterogeneity

but some statistics might not be relevant at the beginning

I Some statistics might turn to be not significant (when they are!)
if a statistic plays a role only between two consecutive observations,
it might turn not to be significant over the entire period

I poor gof
estimates will not be able to reproduce the observed value of the statistics
between the pair of observations



Time heterogeneity
How to detect it?

Utilities deriving from the choice of the actors are driven by the
evaluation function

fi (x ,β) =
∑

k
βk sik (x) (1)

but the rules regulating the choice may have changed over time. This
suggests reformulating (1) to account for time heterogeneity

fi (x ,β) =
∑

k

(
βk + I{m}δ

(m)
k

)
sik (x) (2)

where δ(m)
k are period-specific parameters and

I{m} =

 1 for period [tm−1, tm]

0 otherwise



Time heterogeneity
How to detect it?

Intuitively

t0 t1 t2

βk

δ
(1)
k

δ
(2)
k

Example
βrec is the average contribution of reciprocity
δ

(m)
rec added contribution of reciprocity between tm−1 and tm



Time heterogeneity
Statistical test

Testing time heterogeneity corresponds to test

H0 : δ(m)
k = 0 for all k,m

H1 : δ(m)
k 6= 0 for some k,m

How can we test this?

1. Task 2, assignment 10
2. Use simulations

I estimate the model under H0 so that we have an estimate β̂k for βk
I compute the differences

E
β̂k

[Smk − smk ] ∀m,k

I If this differences are large, then β̂k is not a good estimate



Time heterogeneity
Statistical test

This is formally tested using the test statistic

B = g(E
β̂k

[Smk − smk ])′Σ−1
g g(E

β̂k
[Smk − smk ]) ∼ χ2

k

where
I g : R→ R is a function
I Σg is a covariance matrix of g(E

β̂k
[Smk − smk ])

Interpretation:
I higher values of B (p-values < 0.05) provides evidence against H0

I lower values of B (highp-value>0.05) provides evidence to H0



Time heterogeneity
Statistical test

If H0 is rejected, i.e. there is time heterogeneity
I a researcher can estimate different SAOMs based the observations of

the network for which there is time-homogeneity
drawback: we have several models

I we can specify a new evaluation function:

fi (x ,β) =
∑

k
βk sik (x) + I{m}δ

(m)
k sik (x)

comprising of the time-dependent statistics I{m}sik (x) so that we
can estimate δ(m)

k

This results in one model with more parameters



Time heterogeneity
Example

Testing if the poor gof of the SAOM on the s50 data is due to time
heterogeneity

This is done using the command sienaTimeTest
(see the R script gof.R)

Joint significance test of time heterogeneity:
chi-squared = 7.53, d.f. = 8, p= 0.4806,
where H0: The following parameters are zero:
(1) (*)Dummy2:outdegree (density)
(2) (*)Dummy2:reciprocity
(3) (*)Dummy2:transitive triplets
(4) (*)Dummy2:transitive reciprocated triplets
(5) (*)Dummy2:3-cycles
(6) (*)Dummy2:transitive ties
(7) (*)Dummy2:outdegree - popularity
(8) (*)Dummy2:outdegree - activity

No effect of time heterogeneity



Time heterogeneity
Example

Testing if the poor gof of the SAOM on the s50 data is due to time
heterogeneity

This is done using the command sienaTimeTest
(see the R script gof.R)

Effect-wise joint significance tests
(i.e. each effect across all dummies):

chi-sq. df p-value
outdegree (density) 0.42 1 0.517
reciprocity 2.78 1 0.095
transitive triplets 2.16 1 0.142
transitive reciprocated triplets 2.29 1 0.130
3-cycles 2.08 1 0.149
transitive ties 1.84 1 0.175
outdegree - popularity 1.11 1 0.292
outdegree - activity 0.86 1 0.354

No effect of time heterogeneity

To include time-dependent statistics you could use includeTimeDummy
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Modelling the co-evolution of networks and behavior
Motivation: selection and influence
Model definition and specification
Simulating the co-evolution of networks and behavior
Parameter estimation
Increasing and decreasing the level of a behavior, gof
ERGMs



Non-directed relations

For directed relation we assumed that:

1. an actor gets the opportunity to make a change

2. he decided for the change that assures him the highest payoff

Are these assumptions still reliable when we consider
undirected relations such as: collaboration, trade,
strategic alliance?

Yes AND No!!!



Non-directed relations

For directed relation we assumed that:

1. an actor gets the opportunity to make a change

2. he decided for the change that assures him the highest payoff

Are these assumptions still reliable when we consider
undirected relations such as: collaboration, trade,
strategic alliance?

Yes AND No!!!



Non-directed relations
Notation

I x is the current state of the network
Since relations are non-directed xij = xji , from now on, xij denotes the tie
between i and j (not the tie from i to j!!!)

I x+ij denotes the network where the tie between i and j is present

I x−ij denotes the network where the tie between i and j is absent

I x ′ denotes the next state of the network according to the evolution
process

I The evaluation function is defined as: fi (x ,β) =
∑

k
βk sik (x)

where sik (x) are the statistics for a non-directed network

edges
triangles 2-stars

For simplicity we will write fi (x) instead of fi (x ,β)



Non-directed relations
Extending the SAOM

Some preliminary remarks:

I necessity of making reasonable assumptions
about the negotiation or coordination of the actors
involved in the maintenance, creation or termination of a tie

I Several SAOMs can be defined
(i.e. there is not only a single formulation,
and several cases must be considered!)

I The distinction among the SAOMs concernes both
the change opportunity process (i.e. the rate function)
and the change determination process (i.e. the evaluation function)



Non-directed relations
Extending the SAOM: assumptions

Assumptions that are maintained:

I continuos-time
while the observation schedule is in discrete time,
the underlying evolution process takes place in continuous time

I Markov assumption
The future configuration of the network depends only on
the current configuration

I At each point in time only one tie can change
Given x the next state of the network x ′ is
either x ′ = x+ij or x ′ = x−ij , shortly x ′ = x±ij

The other assumptions depend on the change opportunity process and
the change determination process



Non-directed relations
Extending the SAOM: assumptions

Two options are available for the change opportunity process:

1. One-sided initiative
one actor i gets the opportunity to propose a change

2. Two-sided initiative
a pair of actors (i , j) is selected and
gets the opportunity to change the tie between them

Three options are available for the change determination process:

a. Dictatorial choice
one actor imposes a decision

b. Mutual choice
one actor suggests a change and the other has to agree

c. Compensatory choice
actors decide on the base of their combined interests



Non-directed relations
Extending the SAOM: assumptions

Two options are available for the change opportunity process:

1. One-sided initiative
one actor i gets the opportunity to propose a change

2. Two-sided initiative
a pair of actors (i , j) is selected and
gets the opportunity to change the tie between them

Three options are available for the change determination process:

a. Dictatorial choice
one actor imposes a decision

b. Mutual choice
one actor suggests a change and the other has to agree

c. Compensatory choice
actors decide on the base of their combined interests



Non-directed relations
Extending the SAOM: one-sided initiative

The change opportunity process follows the same formulation of the
SAOMs for directed ties

(Recall)
The waiting time between opportunities of change for an actor i is
exponentially distributed with parameter λi (α,x ,v)

I all actors have the same rate of change λ

P(i has the opportunity of change) =
λ

λn
=

1
n
∀i ∈N

I actors may change their ties at different frequencies λi (α,x ,v)

P(i has the opportunity of change) =
λi (α,x ,v)

n∑
j=1

λj (α,x ,v)



Non-directed relations
Extending the SAOM: one-sided initiative

Given the change opportunity process we can considered the change
determination process.

Three options are available:
a. Dictatorial choice:

i chooses his action and imposes his decision to j
⇓

The formulation of the model is equal to that of the SAOM for directed ties

b. Mutual choice:
i suggests a tie and j has to agree

c. Compensatory choice:
actors decide on the base of their combined interests
This is quite artificial and not considered!



Non-directed relations
Extending the SAOM: one-sided initiative and mutual choice

E.g. actor 1 gets the opportunity to change
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The tie is terminated!!!



Non-directed relations
Extending the SAOM: one-sided initiative and mutual choice

E.g. actor 1 evaluates the alternatives
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Non-directed relations
Extending the SAOM: one-sided initiative and mutual choice

E.g. the best choice of actor 1 is to delete the tie between himself and 4
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Non-directed relations
Extending the SAOM: one-sided initiative and mutual choice

E.g. actor 1 suggests to actor 2 to create the tie between them
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Non-directed relations

E.g. actor 2 evaluates the proposal of actor 1
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Non-directed relations
Extending the SAOM: one-sided initiative and mutual choice

I Actor i is selected and has the opportunity to make a change
I Actor i selects the best possible choice with probabilities

pi(±ij) =
exp
(

fi
(

x±ij
))∑

h exp
(

fi
(

x±ih
))

I If the best choice for i is to terminate or do not create xij ,
the proposal is put into effect, i.e. x ′ = x−ij

I If the best choice for i is to create or maintain xij ,
this is proposed to j who accepts with probability

pj(+ij) =
exp
(

fj
(

x+ij
))

exp (fj (x−ij )) + exp (fj (x+ij ))

From now on, pi(·) denotes the probability that i chooses (·)



Non-directed relations
Extending the SAOM: one-sided initiative and mutual choice

Jointly these rules lead to the following transition probability:

I

px′ =
exp
(

fi
(

x−ij
))∑

h exp
(

fi
(

x±ih
))

when x ′ = x−ij

I

px′ =
exp
(

fi (x+ij )
)∑

h exp
(

fi
(

x±ih
)) ( exp

(
fj
(

x+ij
))

exp (fj (x−ij )) + exp (fj (x+ij ))

)

when x ′ = x+ij



Non-directed relations
Extending the SAOM: assumptions

Two options are available for the change opportunity process:

1. One-sided initiative
one actor i gets the opportunity to propose a change

2. Two-sided initiative
a pair of actors (i , j) is selected and
gets the opportunity to change the tie between them

Three options are available for the change determination process:

a. Dictatorial choice
one actor imposes a decision

b. Mutual choice
one actor suggests a change and the other has to agree

c. Compensatory choice
actors decide on the base of their combined interests



Non-directed relations
Extending the SAOM: two-sided initiative

The change opportunity process models the frequency at which
a couple (i , j) gets the opportunity to change the tie between them

The waiting time between opportunities of change for a couple (i , j) is
exponentially distributed with parameter λij (α,x ,v)

I all the couples have the same rate of change λ

P((i , j) has the opportunity of change) =
2λ

λn(n−1)
=

2
n(n−1)

∀i , j ∈N

I couples may change at different frequencies λij (α,x ,v)

P((i , j) has the opportunity of change) =
λij (α,x ,v)

n∑
i,j=1

λij (α,x ,v)



Non-directed relations
Extending the SAOM: two-sided initiative and dictatorial choice

E.g.
The couple (1,2) is selected and actor 1 imposed his decision on 2
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Non-directed relations
Extending the SAOM: two-sided initiative and dictatorial choice

I Actor i and j are selected and have the opportunity to change the tie
between them

I Actor i imposes the decision about the existence of the tie xij on j

pi(±ij) =
exp
(

fi (x±ij )
)

exp (fi (x+ij )) + exp (fi (x−ij ))
= px′



Non-directed relations
Extending the SAOM: two-sided initiative and mutual choice
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Non-directed relations
Extending the SAOM: two-sided initiative and mutual choice
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Non-directed relations
Extending the SAOM: two-sided initiative and mutual choice

I Actor i and j are selected and have the opportunity to change the tie
between them

I Actor i proposes his choice with probability

pi(±ij) =
exp
(

fi
(

x±ij
))

exp (fi (x+ij )) + exp (fi (x−ij ))

I Actor j proposes his choice with probability

pj(±ij) =
exp
(

fj (x±ij )
)

exp (fj (x+ij )) + exp (fj (x−ij ))



Non-directed relations
Extending the SAOM: two-sided initiative and mutual choice

Jointly, these rules lead to the following transition probability:

I x ′ = x (+ij)

px′ =
exp
(

fi
(

x+ij
))

exp (fi (x+ij )) + exp (fi (x−ij ))
exp
(

fj
(

x+ij
))

exp (fj (x+ij )) + exp (fj (x−ij ))

I x ′ = x−ij

px′ = 1−
exp
(

fi
(

x+ij
))

exp (fi (x+ij )) + exp (fi (x−ij ))
exp
(

fj
(

x+ij
))

exp (fj (x+ij )) + exp (fj (x−ij ))



Non-directed relations
Extending the SAOM: two-sided initiative and compensatory choice
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Non-directed relations
Extending the SAOM: two-sided initiative and compensatory choice
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Non-directed relations
Extending the SAOM: two-sided initiative and compensatory choice

I Actor i and j are selected and have the opportunity to change the tie
between them

I Actor i and j choose their action with probability

pij(±ij) =
exp
(

fi
(

x±ij
)

+ fj
(

x±ij
))

exp (fi (x+ij ) + fj (x+ij )) + exp (fi (x−ij ) + fj (x−ij ))
= px′

where pij(·) denotes the probability that i and j choose (·)



Non-directed relations
RSiena

Use the argument modelType in the function sienaAlgorithmCreate.
This argument takes value:

I 1 = directed SAOMs (default value)
I 2 = one-sided, dictatorial
I 3 = one-sided, mutual
I 4 = two-sided, dictatorial
I 5 = two-sided, mutual
I 6 = two-sided, compensatory



Non-directed relations
Stochastic tie-oriented model

The focus is entirely on dyads:
I two-side opportunity process

I the utility function is computed with respect to the couple

f(i,j)(β,x) =
∑

k
βk s(i,j)k (x)

where s(i,j)k (x) is the statistic computed from the point of view of
both i and j (or equivalently from the point of view of the tie xij !)

i j

edges
i j

triangles
i j

2-stars



Non-directed relations
Stochastic tie-oriented model
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Non-directed relations
Stochastic tie-oriented model

I Actor i and j are selected and have the opportunity to change the tie
between them

I Actor i and j choose their action with probability

pij(±ij) =
exp
(

fij
(

x±ij
))

exp (fij (x+ij )) + exp (fij (x−ij ))
= px′



Outline

Introduction
Longitudinal network data
A bit of Statistics

Stochastic actor-oriented models
Model definition
Model specification
Simulating the network evolution
Parameter Estimation
Parameter interpretation
Goodness of fit
Non-directed relations
ERGMs and SAOMs

Modelling the co-evolution of networks and behavior
Motivation: selection and influence
Model definition and specification
Simulating the co-evolution of networks and behavior
Parameter estimation
Increasing and decreasing the level of a behavior, gof
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ERGMs
Recall

ERGMs are models for cross-sectional data:
they return the probability of an observed graph (network) G ∈ G

as a function of statistics si (G) and statistical parameters θi

Pθ(G) = 1
κ(θ) exp

( k∑
i=1

θi · si (G)
)

Examples of statistics si (G) are:

edges
triangles 2-stars



ERGMs
Recall

ERGMs are also defined for directed graphs:
the mathematical formulation is the same but the effects take into
account the direction of ties

Examples of statistics si (G) are:

edges mutual dyads
transitive triplets 2-out-stars



SAOMs
Recall

SAOMs are models for longitudinal data:
the evolution of the network over time, assuming that network changes
happen according to a continuous-time Markov chain modeled by:

I the rate function λ
I the evaluation function

fi (β,x(i ; j),vi ,vj ) =
K∑

k=1
βk sik (x(i ; j))

where examples of the statistics sik (x(i ; j)) are:

i

edges

i

mutual dyads i

transitive triplets

i

2-out-stars



SAOMs
Recall

SAOMs can be also defined for non-directed ties:
I according to the assumptions related to the change opportunity and

the change determination processes different models can be define
I the evaluation function is computed from the point of view of either

an actor i or a couple of actors (i,j)

f(·)(β,x(i ; j),vi ,vj ) =
K∑

k=1
βk s(·)k (x(i ; j))

Examples of statistics s(·)k (x(i ; j)) are:

i j

edges i j

triangles

i j

2-stars



SAOMs and ERGMs

Although ERGMs and SAOMs have different aims
and require different data, the “same” statistics are
used as explanatory variables in both models.

This might suggest the existence of a
“statistical” relation between ERGMs and SAOMs

We are going to prove that:

1. ERGMs are the limiting distribution of the process
described by a certain specification of SAOMs
when ties are directed

2. ERGMs are the limiting distribution of a particular
formulation of the SAOMs
when ties are undirected
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used as explanatory variables in both models.

This might suggest the existence of a
“statistical” relation between ERGMs and SAOMs

We are going to prove that:
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described by a certain specification of SAOMs
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2. ERGMs are the limiting distribution of a particular
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Background: intensity matrix

Definition
Let {X (t), t ∈ T} be a continuous-time Markov chain with:

P(X(tj ) = x ′|X(t) = x(t),∀t ≤ ti ) = P(X(tj ) = x ′|X(ti ) = x) ∀x ,x ′ ∈ S

and holding time modelled by the rate function λ
There exists a function q : X×X→ R such that

q(x ,x ′) = lim
dt→0

P(X(t+dt)=x ′|X(t)=x)
dt = λP(X (tj ) = x ′|X (ti ) = x)

q(x ,x) = lim
dt→0

P(X(t+dt)=x ′|X(t)=x)−1
dt = λP(X (tj ) = x |X (ti ) = x)

The function q is called intensity matrix of the process.

The element q(x , x̃) is the rate at which the process in state x tends to
change into x̃



Background: limiting distribution

Definition

The limiting distribution P of a continuous-time Markov chain
{X (t), t ∈ T} is defined as

Px ′ = lim
t→∞

P(X (tj ) = x ′|X (ti ) = x)

Therefore, the limiting distribution of {X (t), t ∈ T} is the distribution
that describes the probability of jumping from x to x ′ in the long run
behavior of the process.

Px ′ is also the stationary distribution of the process



Irreducible aperiodic Markov chain and limiting distribution

Definition

A continuous-time Markov chain is irreducible if there is a path between
any states x and x ′

A continuous-time Markov chain is aperiodic if the greatest common
divisor of the length of all cycles equals one.

Theorem

If {X (t), t ∈ T} is an irreducible and aperiodic continuous-time Markov
chain and the detailed balance condition holds

Px ′ ·q(x ′,x) = Px ·q(x ,x ′)

then Px is the unique limiting (stationary) distribution of {X (t), t ∈ T}
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A continuous-time Markov chain is irreducible if there is a path between
any states x and x ′

A continuous-time Markov chain is aperiodic if the greatest common
divisor of the length of all cycles equals one.

Theorem
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ERGMs and SAOMs
Directed ties

Let us now consider a SAOM specified by the following functions:

- rate function

λi =
n∑

h=1
exp
(
β′s(x(i ; h))

)
i.e., actors for whom changed relations have a higher value, will
indeed change their relation more quickly.

- evaluation function

fi (β,x(i ; j)) =
K∑

i=1
βk sk (x(i ; j) = β′s(x(i ; j))

i.e. actors take their decision considering the global configuration of
the network



ERGMs and SAOMs
Directed ties

The rate and the evaluation functions define a continuous-time Markov
chain on the set X.

The associated intensity matrix q of the process is: q(x ,x(i ; j)) = λi pij = exp(β′s(x(i ; j))

q(x ,x) = λi pij = exp(β′s(x(i ; i))

We can prove that ERGMs

P(X = x) =
exp
( K∑

i=1
βk sk (x)

)
κ(θ) = exp(β′s(x))

κ(θ)

are the unique stationary distribution of the SAOM defined before
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The rate and the evaluation functions define a continuous-time Markov
chain on the set X.

The associated intensity matrix q of the process is: q(x ,x(i ; j)) = λi pij = exp(β′s(x(i ; j))

q(x ,x) = λi pij = exp(β′s(x(i ; i))

We can prove that ERGMs

P(X = x) =
exp
( K∑

i=1
βk sk (x)

)
κ(θ) = exp(β′s(x))

κ(θ)

are the unique stationary distribution of the SAOM defined before



Computing the limiting distribution
Directed ties

Proof

1. Existence of a unique invariant distribution

The continuous-time Markov chain described by the SAOM is:

I irriducible:
each network configuration can be reached from any other network
configuration in a finite number of steps

I aperiodic:
at each time point t an actor i has the opportunity not to change
anything and, thus, the period of each state is equal to 1



Computing the limiting distribution
Directed ties

Proof (continue)

2. ERGMs are the stationary distribution

Given two states x and x(i ; j) of {X (t), t ∈ T} the balance equation
holds when ERGMs is the stationary distribution:

Px(i;j) ·q(x(i ; j),x) = exp(β′s(x(i ; j))
κ(θ) · exp(β′s(x))

= exp(β′s(x))
κ(θ) · exp(β′s(x(i ; j))

= Px ·q(x ,x(i ; j))



Tie-based model
Unirected ties

We assume that

I each dyad (i , j) can be selected with the same rate λ

I the evaluation function is:

f(i,j)(β,x) =
∑

k
βk s(i,j)k (x))

where s(i,j)k (x) is the statistic computed from the point of view of
both i and j

I The transition probability is

pij(±ij) = exp(fij (x±ij ))
exp(fij (x+ij )) + exp(fij (x−ij ))



Tie-based model
Unirected ties

The intensity matrix of the process is:


q
(
x ,x+ij)= λpij(+ij) = λ

exp(fij (x+ij ))
exp(fij (x+ij ))+exp(fij (x−ij ))

q
(
x ,x−ij)= λpij(−ij) = λ

exp(fij (x−ij ))
exp(fij (x+ij ))+exp(fij (x−ij ))

The limiting distribution of such a model is again an ERGM



Computing the limiting distribution
Tie-based model

Proof

1. Existence of a unique invariant distribution

The continuous-time Markov chain defined by the tie based model is

I irriducible:
each network configuration can be reached from any other network
configuration in a finite number of steps

I aperiodic:
at each time point t a pair (i , j) has the opportunity not to change
anything and, thus, the period of each state is equal to 1



Computing the limiting distribution
Tie-based model

2. ERGMs are the stationary distribution
Given x−ij and x+ij the balance equation holds:

Px−ij q
(

x−ij ,x+ij
)

= eβ
′s(x−ij )

κ(θ) ·λ · eβ
′sij (x+ij )

eβ′sij (x+ij ) + eβ′sij (x−ij )

= eβ
′s(x−ij )−β′s(x+ij )+β′s(x+ij )

κ(θ) · λ

1 + e(β′sij (x−ij )−β′sij (x+ij ))

= eβ
′s(x+ij )

κ(θ) ·λ · eβ
′s(x−ij )−β′s(x+ij )

1 + eβ′sij (x−ij )−β′sij (x+ij )

=
(∗)

eβ
′s(x+ij )

κ(θ) ·λ · eβ
′sij (x−ij )

eβ′sij (x+ij ) + eβ′sij (x−ij )

= Px+ij ·q
(

x+ij ,x−ij
)

(∗) β′s(x−ij )−β′s(x+ij ) = β′sij (x−ij )−β′sij (x+ij )
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Networks are dynamic by nature: a real example
A. Knecht (2008): “Friendship Selection and Friends’ Influence”

Four time points in the pupils’ first year at secondary school (color delinquency)



Motivation

“Social network dynamics may depend on actors’ characteristics”

Selection process:
partners are selected according to their characteristics

Example
Homophily:
the formation of relations based on the similarity of two actors

E.g. delinquency behavior

t0 t1

pupils with the same delinquent behavior tend to become friends



Motivation

“Changeable actors’ characteristics can depend on the social network”

Changeable actors’ characteristics are called behavior

Influence process:
actors adjust their characteristics according to the characteristics of other
actors to whom they are tied

Example
Assimilation/contagion:
connected actors become increasingly similar over time
E.g. delinquency behavior

t0 t1

pupils adjust their delinquent behavior to that of their friends



Competing explanatory stories

Homophily and assimilation give rise to the same outcome
(similarity of connected individuals)

i j

i j

i j “selection”

“influence”

t0 t1



Fundamental question

Is the similarity of connected individuals caused mainly by influence or
selection?

I Study of influence requires the consideration of selection and vice
versa

I Only longitudinal data allows distinguishing between selection and
influence

Extending the SAOM to the analisys of the
co-evolution of networks and behaviors
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Longitudinal network-behavior panel data

1. a network x represented by its adjacency matrix
2. a series of actors’ attributes:

I H constant covariates V1, . . . ,VH
I L behavioral covariates Z1, . . . ,ZL

behavioral variables are ordinal categorical variables

Longitudinal network-behavior panel data:
networks and behaviors observed at M ≥ 2 time points t1, · · · , tM

(x ,z)(t0), (x ,z)(t1), · · · , (x ,z)(tM)

and the constant covariates V1, . . . ,VH
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Assumptions
1. Distribution of the process: continuous-time Markov chain

- State space C: all the possible configurations arising from
the combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavioral variable
Example
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Assumptions
1. Distribution of the process: continuous-time Markov chain

- State space C: all the possible configurations arising from
the combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavioral variable.

- Markovian assumption: changes actors make are assumed to depend only
on the current state of the network and the behavior

- Continuous-time:

i j i j

i j i j

t0 t1
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Assumptions
1. Distribution of the process: continuous-time Markov chain

- State space C: all the possible configurations arising from
the combination of network and behaviors

|C |= 2n(n−1)×Bn

where B is the number of categories for the behavioral variable.

- Markovian assumption:
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the network

- Continuous-time:
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Assumptions
2. Opportunity to change
At any given moment ONE probabilistically selected actor has the opportunity
to change one of his outgoing ties OR his behavior
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Notation:
z(l ; l + 1) denotes the change in the behavior L when an actor i increases
z(l ; l + 1) the level of his behavior by one unit
z(l ; l−1) denotes the change in the behavior L when an actor i decreases
z(l ; l−1) the level of his behavior by one unit
z(l ; l + 1) denotes that an actor i does not change the level of the behavior
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Assumptions

3. Absence of co-occurrence
At each instant t, only one actor has the opportunity to change
(one of his outgoing ties or his behavior)

4. Actor-oriented perspective
Actors control their outgoing ties as well as their own behavior

I the actor decides to change one of his outgoing ties or his behavior trying
to maximize a utility function

I two distinct evaluation functions:
one for network changes and one for behavioral changes

I actors have complete knowledge about the network and the behaviors of
all the the other actors

I the maximization is based on immediate returns (myopic actors)
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I actors have complete knowledge about the network and the behaviors of
all the the other actors

I the maximization is based on immediate returns (myopic actors)



Model definition

The co-evolution process is decomposed into a series of micro-steps:
I network micro-step:

the opportunity of changing one network tie and
the corresponding tie changed

I behavior micro-step:
the opportunity of changing a behavior and
the corresponding unit changed in behavior



Model definition

There are two types of micro-steps:
I network micro-steps
I behavioral micro-steps

Occurrence Preference

Network changes Network
rate function

Network
evaluation function

Behavioral changes Behavioral
rate function

Behavioral
evaluation function

N.b.
In the literature the evaluation function is also called objective function



The rate functions

The frequency by which actors have the opportunity to make a change is
modelled by the rate functions, one for each type of change.

Why must we specify two different rate functions?

Practically always, one type of decision will be made more frequently
than the other

Example
In a joint study of friendship and smoking behavior at high school, we
would expect more frequent changes in the network than in the behavior
(what about friendship and delinquency???)
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The rate functions

Network rate function
T net

i = waiting time until i gets the opportunity to make
T net

i = a network change

T net
i ∼ Exp(λnet

i )

Behavioral rate function
T beh

i = waiting time until i gets the opportunity to make
T beh

i = a behavioral change

T beh
i ∼ Exp(λbeh

i )

Waiting time for the next micro-step
T net∨beh

i = waiting time until i gets the opportunity to make any change

T net∨beh
i ∼ Exp(λnet

i +λbeh
i )
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The rate functions (simplest specification)

Network rate function
T net

i = waiting time until i gets the opportunity to make
T net

i = a network change

T net
i ∼ Exp(λnet)

Behavioral rate function
T beh

i = waiting time until i gets the opportunity to make
T beh

i = a behavioral change

T beh
i ∼ Exp(λbeh)

Waiting time for the next micro-step
T net∨beh

i = waiting time until i gets the opportunity to make any change

T net∨beh
i ∼ Exp(λnet +λbeh)



The rate functions (simplest specification)

Network rate function
T net

i = waiting time until i gets the opportunity to make
T net

i = a network change

T net
i ∼ Exp(λnet)

Behavioral rate function
T beh

i = waiting time until i gets the opportunity to make
T beh

i = a behavioral change

T beh
i ∼ Exp(λbeh)

Waiting time for the next micro-step
T net∨beh

i = waiting time until i gets the opportunity to make any change

T net∨beh
i ∼ Exp(λnet +λbeh)



The rate functions (simplest specification)

Probabilities for an actor to make a micro-step

P(i can make a network micro− step|opportunity) = λnet

λnet +λbeh

P(i can make a behavioral micro− step|opportunity) = λbeh

λnet +λbeh

Probabilities for a micro-step

P(network micro− step) = nλnet

n(λnet +λbeh) = λnet

λnet +λbeh

P(behavioral micro− step) = nλbeh

n(λnet +λbeh) = λbeh

λnet +λbeh



The rate functions (simplest specification)
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The evaluation functions

Why must we specify two different evaluation functions?

I The network evaluation function represents
how likely it is for i to change one of his outgoing ties

I The behavioral evaluation function represents
how likely it is for the actor i the current level of his behavior

Network utility function: we already know it!

unet
i (β,x(i ; j),z ,v) = f net

i (β,x(i ; j),z ,v) +Eij

=
K∑

k=1
βk snet

ik (x ,z ,v) +Eij
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The evaluation functions

Why must we specify two different evaluation functions?

I The network evaluation function represents
how likely it is for i to change one of his outgoing ties

I The behavioral evaluation function represents
how likely it is for the actor i the current level of his behavior

Network utility function: we already know it!

unet
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The behavioral evaluation function

ubeh
i (γ,z(l ; l ′),x ,v) = f beh

i (γ,z(l ; l ′),x ,v) +Ell′

=
W∑

w=1
γw sbeh

iw (x ,z(l ; l ′),v) +Ell′

where
- sbeh

iw (x ,z(l ; l ′),v) are statistics

- γw are statistical parameters

- Ell′ is a random term (Gumbel distributed)

The probability that an actor i changes his own behavior by one unit is:

pll′(i) =
exp
(

f beh
i (γ,z(l ; l ′),x ,v)

)∑
l′′∈{l+1,l−1,l}

exp
(

f beh
i (γ,z(l ; l ′′),x ,v)

)
pll (i) is the probability that i does not change his behavior

N.b. In the following we will write z ′ instead of z(l ; l ′)



The behavioral evaluation function

ubeh
i (γ,z(l ; l ′),x ,v) = f beh

i (γ,z(l ; l ′),x ,v) +Ell′

=
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γw sbeh

iw (x ,z(l ; l ′),v) +Ell′

where
- sbeh

iw (x ,z(l ; l ′),v) are statistics

- γw are statistical parameters

- Ell′ is a random term (Gumbel distributed)

The probability that an actor i changes his own behavior by one unit is:

pll′(i) =
exp
(

f beh
i (γ,z(l ; l ′),x ,v)

)∑
l′′∈{l+1,l−1,l}

exp
(

f beh
i (γ,z(l ; l ′′),x ,v)

)
pll (i) is the probability that i does not change his behavior

N.b. In the following we will write z ′ instead of z(l ; l ′)



The behavioral evaluation function
Basic shape effects

sbeh
i linear (x ,z ′,v) = z ′i sbeh

i quadratic (x ,z ′,v) = (z ′i )2

The basic shape effects must be always included in the model specification

γquad (z ′i )2 +γlinear z ′i γquad (z ′i )2 +γlinear z ′i

γquad < 0 γquad > 0



The behavioral evaluation function

Classical influence effects

1. The average similarity effect

sbeh
i avsim(x ,z ′,v) = 1(

n∑
j=1

xij

) n∑
j=1

xij

(
1−

∣∣z ′i − z ′j
∣∣

Rz

)

Rz is the range of the behavior z

2. The total similarity effect

sbeh
i totsim(x ,z ′,v) =

n∑
j=1

xij

(
1−

∣∣z ′i − z ′j
∣∣

Rz

)

Interpretation:
γavsim>(<)0: evidence towards (against) influence



The behavioral evaluation function

Position-dependent influence effects

Network position could also affect the behavioral dynamics

1. Outdegree effect

sbeh
i out(x ,z ′,v) = z ′i

n∑
j=1

xij i ⇒ i

Interpretation:
γout > (<)0: active actors tend to increase (decrease) their level of
the behavior

Effects of other actor variables
For each actor’s attribute a main effect on the behavior can be included in the model



The behavioral evaluation function

Position-dependent influence effects

Network position could also have an effect on the dynamics of the
behavior

2. Indegree effect

sbeh
i ind (x ,z ′,v) = z ′i

n∑
j=1

xji i ⇒ i

Interpretation:
γind > (<)0: popular actors tend to increase (decrease) their level of
the behavior

Effects of other actor variables
For each actor’s attribute a main effect on the behavior can be included in the model



Effects: distinguishing selection from influence

Selection Influence

Covariate-ego Outdegree
si cego(x ′,v) = vi

∑
j

x ′ij sbeh
i out (x ,z ′,v) = z ′i

∑
j

xij

i ⇒ i i ⇒ i

Covariate-alter Indegree
si calt (x ′,v) =

∑
j

x ′ij vj sbeh
i ind (x ,z ′,v) = z ′i

∑
j

xji

i ⇒ i i ⇒ i



Effects: distinguishing selection from influence

Selection Influence

Covariate-related similarity Total similarity

si csim(x ′,v) =
∑

j
x ′ij
(

1− |vi−vj |
RV

)
sbeh
i totsim(x ,z ′,v) =

n∑
j=1

xij

(
1− |z

′
i −z′j |
Rz

)
i j ⇒ i j i j ⇒ i j

They differ in the dependent variable!
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Simulating the co-evolution of networks and behavior
Aim: given (x ,z)(t0) and fixed parameter values,

provide (x ,z)sim(t1) according to the process behind the SAOM

⇓

reproduce a possible series of network and behavioral micro-steps
between t0 and t1

Input
n: number of actors (given)
λnet : network rate parameter (given)
λbeh: behavioral rate parameter (given)
β = (β1, . . . ,βK ): network evaluation function parameters (given)
γ = (γ1, . . . ,γW ): behavioral evaluation function parameters (given)
(x ,z)(t0): network and behavior at time t0 (given)

Output
(x ,z)sim(t1): network and behavior at time t1



Simulating the co-evolution of networks and behavior
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n),
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n),
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))
if l 6= l ′ then

z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)

1

2

3

4
0 0 0 1 2
0 0 0 1 3
0 1 0 0 2
0 1 0 0 3

(x ,z)(t0)

n = 4

λnet = 1.5
λbeh = 1

β = (βout ,βrec ,βtrans )
βi=(-1,0.5,-0.25)
γ = (γlinear ,γquadratic )
γi=(-2,1)



Simulating the co-evolution of networks and behavior
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))
if l 6= l ′ then

z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)

Generating the waiting time:
- dtnet for a tie change
- dtbeh for a behavioral

change



Simulating the co-evolution of networks and behavior
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))
if l 6= l ′ then

z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)

Which micro-step is going to
happen?

If
dtnet < dtbeh

then a network micro-step
takes place.

The following steps are the
same of those in the algorithm
for the network evolution



Simulating the co-evolution of networks and behavior
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))
if l 6= l ′ then

z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)

Which micro-step is going to
happen?

If
dtbeh < dtnet

then a behavior micro-step
takes place.



Simulating the co-evolution of networks and behaviors
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))
if l 6= l ′ then

z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)

Select the actor i who has the
opportunity to change his be-
havior

e.g. i=1

1

2

3

4
0 0 0 1 2
0 0 0 1 3
0 1 0 0 2
0 1 0 0 3

(x ,z)(t0)



Simulating the co-evolution of networks and behaviors
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n);
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))

if l 6= l ′ then
z ← z(l ; l ′)

t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)

Select the level l ′ towards i is
going to adjust his behavior

l → l ′ f beh
i pll′

2 → 1 -1 0.017
2 → 2 0 0.047
2 → 3 3 0.936



Simulating the co-evolution of networks and behaviors
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))
if l 6= l ′ then

z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)

Select the level l ′ towards i is
going to adjust his behavior

e.g. l’=3

1

2

3

4

0 0 0 1 3
0 0 0 1 3
0 1 0 0 2
0 1 0 0 3

(x ,z(l → l ′))



Simulating the co-evolution of networks and behaviors
Algorithm: Network-behavior co-evolution
Input: x(t0), z(t0), λnet , λbeh, β, γ, n
Output: x sim(t1), zsim(t1)
t← 0; x ← x(t0); z ← z(t0)
while condition=TRUE do

dtnet ∼ Exp(nλnet ); dtbeh ∼ Exp(nλbeh)
if min{dtnet ,dtbeh}= dtnet then

i ∼ Uniform(1, . . . ,n)
j ∼ Multinomial(pi1, . . . ,pin)
if i 6= j then

x ← x(i ; j)
t← t + dtnet

else
i ∼ Uniform(1, . . . ,n)
l ′ ∼ Multinomial(pl(l−1),pll′ ,pl(l+1))
if l 6= l ′ then

z ← z(l ; l ′)
t← t + dtbeh

x sim(t1)← x ; zsim(t1)← z
return x sim(t1), zsim(t1)



Simulating the co-evolution of networks and behavior

1. Unconditional simulation:
simulation carries on until a predetermined time length has elapsed
(usually until t = 1).

2. Conditional simulation on the observed number of changes:
I simulation runs on until

n∑
i,j=1
ı6=j

∣∣∣X obs
ij (t1)−Xij (t0)

∣∣∣=
n∑

i,j=1

∣∣∣X sim
ij (t1)−Xij (t0)

∣∣∣
I or until

n∑
i=1

∣∣∣zobs
i (t1)− zi (t0)

∣∣∣=
n∑

i=1

∣∣∣zsim
i (t1)− zi (t0)

∣∣∣
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Parameter estimation
Aim: given the longitudinal data

(x ,z)(t0), . . . ,(x ,z)(tM) v1, . . . ,vH

estimate the parameters for the co-evolution model
I M rate parameters for the network rate function

λnet
1 , . . . , λnet

M

I M rate parameters for the behavior rate function

λbeh
1 , . . . , λbeh

M

I K and W parameters for the network evaluation function and
the behavioral evaluation function, respectively

f net
i (β,x ′,z,v) =

K∑
k=1

βk snet
ik (x ′,z,v)

f beh
i (γ,x ′,z,v) =

W∑
w=1

γw sbeh
iw (x ,z ′,v)



Parameter estimation

Issue

Given

(x ,z)(t0), . . . ,(x ,z)(tM) v1, . . . ,vH

and a specification of the SAOM, we want to estimate

θ = (λnet
1 , . . . ,λnet

M ,λbeh
1 , . . . ,λbeh

M ,β1, . . . ,βK ,γ1, . . . ,γW )

Two estimation methods are implemented in Rsiena:

1. Method of Moments

2. Maximum-likelihood estimation



Parameter estimation (MoM)

The 2M + K + W -dimensional parameter θ is estimated using the MoM

In practice:

1. find 2M + K + W statistics

2. set the theoretical expected value of each statistic equal to its
sample counterpart

3. solve the resulting system of equations

Eθ[S− s] = 0

with respect to θ
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Parameter estimation (MoM)

Statistics:

I Network rate parameters for the period m

snet
λm (X (tm),X (tm−1)|X (tm−1)) =

n∑
i,j=1
|Xij (tm)−Xij (tm−1)|

I Behavioral rate parameters for the period m

sbeh
λm (Z (tm),Z (tm−1)|Z (tm−1)) =

n∑
i=1
|Zi (tm)−Zi (tm−1)|

m = 1, . . . ,M



Parameter estimation (MoM)

Statistics:

I Network evaluation function effects
M∑

m=1
snet
mk (X(tm)|(Z ,V )(tm−1))

I Behavioral evaluation function effects
M∑

m=1
sbeh
mw (Z(tm)|(X ,V )(tm−1))



Parameter estimation (MoM)

Consequently the MoM estimator for θ is provided by the solution of:



Eθ
[

snet
λm

(X(tM ),X(tm−1)|X(tm−1))
]

= snet
λm

(x(tm),x(tm−1)) m = 1, . . . ,M

Eθ
[

sbeh
λm

(Z(tm),Z(tm−1)|Z(tm−1))
]

= sbeh
λm

(z(tm),z(tm−1)) m = 1, . . . ,M

Eθ

[
M∑

m=1
snet

mk (X(tm)|(X ,Z ,V )(tm−1))
]

=
M∑

m=1
snet

mk (x(tm)|(x ,z,v)(tm−1)) k = 1, . . . ,K

Eθ

[
M∑

m=1
sbeh

mw (Z(tm)|(X ,Z ,V )(tm−1))
]

=
M∑

m=1
sbeh

mw (z(tm)|(x ,z,v)(tm−1)) w = 1, . . . ,W



Parameter estimation (MoM)

Example
Let us assume to have observed a network at M = 3 time points

1

2

3

4

1

2

3

4

1

2

3

4

t0 t1 t2

0 0 0 1 2
0 0 0 1 3
0 1 0 0 2
0 1 0 0 3

0 0 0 1 1
0 0 0 1 4
0 1 0 0 2
0 1 0 0 3

0 0 1 1 1
0 0 0 1 5
0 0 0 0 3
0 1 1 0 4

We want to model the network evolution according to outdegree,
reciprocity, linear shape and quadratic shape effects

θ = (λnet
1 ,λnet

2 ,λbeh
1 ,λbeh

2 ,βout ,βrec ,γlinear ,γquadratic )
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Parameter estimation (MoM)

Example
Statistics for the network evolution:

sλnet
1

(X (t1),X (t0)|X (t0) = x(t0)) =
4∑

i,j=1
|Xij (t1)−Xij (t0)|

sλnet
2

(X (t2),X (t1)|X (t1) = x(t1)) =
4∑

i,j=1
|Xij (t2)−Xij (t1)|

M−1∑
m=1

sout (X (tm)|X (tm−1) = x(tm−1)) =
2∑

m=1

4∑
i,j=1

Xij (tm)

M−1∑
m=1

srec (X (tm)|X (tm−1) = x(tm−1)) =
2∑

m=1

4∑
i,j=1

Xij (tm)Xji (tm)



Parameter estimation (MoM)

Example
Statistics for the behavior evolution:

sλbeh
1

(Z (t1),Z (t0)|Z (t0) = z(t0)) =
4∑

i=1
|Zi (t1)−Zi (t0)|

sλbeh
2

(Z (t2),Z (t1)|Z (t1) = z(t1)) =
4∑

i=1
|Zi (t2)−Zi (t1)|

M∑
m=1

slinear (Z (tm)|Z (tm−1) = z(tm−1)) =
2∑

m=1

4∑
i=1

zi (tm)

M∑
m=1

squadratic (Z (tm)|Z (tm−1) = z(tm−1)) =
2∑

m=1

4∑
i=1

z2
i (tm)



Parameter estimation (MoM)

Example

1

2

3

4

1

2

3

4

1

2

3

4

t0 t1 t2

0 0 0 1 2
0 0 0 1 3
0 1 0 0 2
0 1 0 0 3

0 0 0 1 1
0 0 0 1 4
0 1 0 0 2
0 1 0 0 3

0 0 1 1 1
0 0 0 1 5
0 0 0 0 3
0 1 1 0 4

sλnet
1

= 2 sλnet
2

= 2

sλbeh
1

= 2 sλbeh
2

= 3

sout = 4 + 6 = 10 srec = 2 + 4 = 6

slinear = 10 + 13 = 23 squadratic = 30 + 51 = 81



The parameter estimation (MoM)

Example
We look for the value of θ that satisfies the system:

Eθ
[

Sλnet
1

]
= 2

Eθ
[

Sλnet
2

]
= 2

Eθ
[

Sλbeh
1

]
= 2

Eθ
[

Sλbeh
2

]
= 3

Eθ[Sout ] = 10

Eθ[Srec ] = 6

Eθ[Slinear ] = 23

Eθ[Squadratic ] = 51



Parameter estimation (MoM)

In a more compact notation, we look for the value of θ that satisfies the
system:

Eθ[S− s] = 0

but we know that we cannot solve it analytically.

The soultion is again provided by the Robbins-Monro algorithm.



Parameter estimation (MoM)
The Robbins-Monro algorithm

Given an initial guess θ0 for the parameter θ, the procedure can be
roughly depicted as follows:

θ0
approximation−−−−−−−−→ Eθ0 [S− s] update−−−−→ θ1

θ1
approximation−−−−−−−−→ Eθ1 [S− s] update−−−−→ θ2

...
approximation−−−−−−−−→ ...

update−−−−→ ...

θi−1
approximation−−−−−−−−→ Eθi−1 [S− s] update−−−−→ θi

...
approximation−−−−−−−−→ ...

update−−−−→ ...

until a certain criterion is satisfied



Parameter estimation (MoM)
The Robbins-Monro algorithm

I The expected value is approximated using the Monte Carlo method:
I the evolution process is simulated q times according to θi
I the statistics are computed for each simulation
I Eθ[S] is approximated by the average of the simulated values of

the statistics

I The updating rule is based on the Robbins-Monro step

θ̂i+1 = θ̂i −ai D̂−1 (Si − s)

where D̂ is a diagonal matrix of first order derivatives

D̂ = ∂

∂θ̂i
E
θ̂i

[S]
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Creation and Endowment function
behavioral evaluation function

Given x(t0) and x(t1) three possible behavioral changes are possible:

x(t0) x(t1)

i i increase of the behavioral level

i i decrease of the behavioral level

i i maintenance of the behavioral level

The behavioral evaluation function models the level of a behavior in a
network regardless the level of a behavior was increased or decreased...
but increasing the level of a behavior is not always the opposite of
decreasing it
(e.g. use of addictive substances)
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Behavioral creation and endowment function

I Creation function
I models the gain in the utility function when a behavioral level is

increased
I The effects are the same as those given for the behavioral evaluation

function...
I but they enter calculation only when the actor considers increasing

his behavioral score by one unit

I Endowment function
I models the gain in the utility function when a behavioral level is

decreased (opposite of maintained)
I The effects are the same as those given for the behavioral evaluation

function...
I but they enter calculation only when the actor considers decreasing

his behavioral score by one unit



Goodness of fit

To evaluate the goodness of fit of SAOMs for the co-evolution of
networks and behavior, the following auxiliary statistics may be used:

I Selection part
I Indegree and outdegree distributions
I Geodesic distance distribution
I Triad census

I Influence part
I Behavior distribution



Goodness of fit
Given the model estimated using the Rscript estimation coev.R
gofb <- sienaGOF(ans, BehaviorDistribution, varName = 'alcohol',
verbose=TRUE, join=TRUE)
plot(gofb)

Goodness of Fit of BehaviorDistribution

p: 0.964

S
ta

tis
tic

1 2 3 4

4

29

58

86
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Selection and influence: ERGMs

Selection:
actors’ attribute may affect the presence or the absence of network ties
(actors may select one another as network partners depending on the attributes
that they have)

Influence:
the presence of a tie may alter the attribute of the actors
(individuals may be influenced by their network partners to change their
behaviors)

Dependent Independent
Network x Behavior z Selection
Behavior z Network x Influence



ERG selection models

In ERGMs

Pθ(G) = 1
κ(θ) exp

( k∑
i=1

θi si (G)
)

the existence of ties are explained by
I the existence of other ties (network statistics)

edges
triangles 2-stars

I the attributes of the actors (covariate-related statistics)

homophily
covariate-related activity



ERG selection models

Let
I X be an adjacency matrix
I V be a matrix of actor-attributes
I Z be a behavior

associated to a certain graph G
In ERGMs the dependent variable is the network, so that

Pθ(G) = 1
κ(θ) exp

( k∑
i=1

θi si (G)
)

is equivalent to write

Pθ(X |V ,Z ) = 1
κ(θ) exp

(∑
θPsP(x) +

∑
θAsA(x ,v ,z)

)



ERG selection models
I aim: explain how a particular network structure may be a product of

endogenous network processes (clustering, transitivity, popularity) and
exogenous nodal and dyadic factors (gender, membership)

I If the attributes are possibly changeable, we are still treating them
as predictors of networks ties
implicit assumption: attribute are not changed by ties

I We should be careful when making inferences
if we see a significant attribute parameter, we have evidence for an
association between attributes and network ties, but we CANNOT make
causal inferences

Example
If θhomophily > 0

I we can say that ties between actors having the same attribute are
more likely (association)

I we CANNOT say that actors having the same attribute tends to
create ties among themselves (causality)



ERG influence model

I aim: how individual behaviors may be constrained by position in a
network and by behaviors of other actors in the network

I implicit assumption: network ties are not changed by the attributes

In ERG influence model the dependent variable is the behavior

Pθ(Z |X ,V ) = 1
κ(θ) exp

(∑
θP sP (x) +

∑
θI sI (x ,z) +

∑
θC sC (x ,v)

)
where

I sP(x) statistic accounting for the network position
I sI (x) statistic accounting for the influence of other actors
I sC (x) statistic accounting for actors’ covariates

Dependence assumptions should be formulated to define these statistics
using the Hammersley-Clifford theorem



Network position statistics
Dependence among the behavior and the ties

Statistics Dependence

Attribute density
∑

i zi Independence

Actor activity
∑

i zi
∑

j xij Zi depends on Xhj if {i} ∩
{h, j} 6= ∅

Actor k-star
∑

i zi

(∑
j xij

k

)
...

Actor triangle
∑

i zi
∑

j<k xij xihxhj Zi depends on Xhj if
xij = 1 and xjh = 1

... ... ... ...

The statistics comprise only the attribute of a focal actor (black node) and his
ties to others, regardless of the attributes of those others (white nodes)



Network influence statistics
Behavior dependence among connected actors

Statistics Dependence

Partner attribute
∑

i zi zj xij Zi depends on Zj
if xij = 1

Indirect partner
attribute

∑
i<h

zi zh
∑

j xij xjh Zi depends on Zh
if xij = 1 and xjh = 1

Partner attribute
triangle

∑
i zi zj xij xihxhj

... ... ... ...



Network influence statistics
Dependence among the behavior and actors covariates

Statistics Dependence

Attribute
covariate

∑
i zi vi Zi depends only on Vi

Partner covariate
attribute

∑
ij

zi vj xij Zi depends on
Vi and Vj if xij = 1

Same partner
covariate

∑
i zi I
{

vi = vj
}

xij

... ... ... ...

The behavior Z is represented by the circle and the actor attribute V is
represented by a square



ERG influence models

I We should be careful when making inferences
if we see a significant network/covariate statistics, we have evidence for
an association between the behavior and the network ties or the actors
covariates, but we CANNOT make causal inferences

Example
If θpartner attribute > 0

I we can say that connected actors are more likely to show the same
behavior

I we CANNOT say that connected actors adjust their behavior
according to the behavior of those they are connected to



Selection and influence: ERGMs

We cannot distinguish influence and selection in cross-selectional data!
We need to collect longitudinal network data.

x(tm−1) x(tm)

z(tm−1) z(tm) influence

selection

With longitudinal network data, we know whether the attribute leads to
the tie, or vice versa, the tie leads to a certain value of the attribute

I In principle TERGMs can be used to distinguish selection and
influence processes

I Proper statistics should be defined and implemented



A few words on...

...topics that are not treated in the course
I Missing data

unit non-response vs. item non-response

I Change in composition
actors can leave or join the network

I Multi-relational network
interest in analysing more than one relation

I Multilevel analysis of networks
a same relation is observed on several groups
(e.g. friendship in several school classes)

I Multilevel networks analysis
there is a hierarchy in the nodes
(e.g. cooperation within a firm and between firms)

I Event network models, models for two-mode networks etc.
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