
Computing Wikipedia Edit-Networks

Ulrik Brandes
University of Konstanz, Germany

Ulrik.Brandes@uni-konstanz.de

Patrick Kenis
TiasNimbas Business School & Tilburg

University, The Netherlands
p.kenis@tiasnimbas.edu

Jürgen Lerner
∗

University of Konstanz, Germany
lerner@inf.uni-konstanz.de

Denise van Raaij
Tiburg University, The Netherlands

D.P.A.M.Korssen-vanRaaij@uvt.nl

ABSTRACT
This technical paper reviews the definition of Wikipedia
edit-networks proposed in [1] and presents an algorithm to
compute them.

1. THE EDIT-NETWORK
In a nutshell, the edit-network associated to a Wikipedia

page p has as nodes the authors of p and encodes how au-
thors contributed to p and how authors interacted with each
other while editing p. This information is computed from
the complete history of p, i. e., from the sequence of its revi-
sions, by determining which part of the text has been added,
has been deleted, or remained unchanged when going from
one version of the page to the next. Since an exhaustive
description of the text-processing algorithm is rather tech-
nical, we first describe precisely what information is encoded
in the edit-network. We clarify in Sect. 2.1 how we handle
reverts, duplicated text, and text that has been moved to
a different location on the page. An algorithm to compute
edit-networks is detailed in Sect. 2.

1.1 Network Model
The edit-network associated to a Wikipedia page p is a

tuple G = (V,E,A), whose components are defined as fol-
lows.

1. The nodes V of the graph (V,E) correspond to the
authors that have done at least one revision on p.

2. The directed edges E ⊆ V × V of the graph (V,E) en-
code the edit interaction among authors. A particular
pair of authors (u, v) ∈ V × V is in E, if u performed
one of the following three actions with respect to v.

(a) u deletes text that has been written by v;

(b) u undeletes text that has been deleted by v (and
written by a potentially different author w);

(c) u restores text that has been written by v (and
deleted by a potentially different author w).

Since authors may as well revise text written by them-
selves, loops, i. e., edges connecting an author with her-
self, are allowed.

∗corresponding author

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

3. A is a set of weighted attributes on nodes and edges,
explained in Sect. 1.2.

1.2 Attributes on Nodes and Edges
The weighted attributes on nodes and edges encode how

much text users add, delete, or restore. Furthermore, in
case of deletion we keep track of who has previously written
the text and in case of restoration we keep track of both,
the original author and the deleter of the restored text. By
combining these attributes, we can get deep insight into the
various roles that users play when editing, as well as into
relations between users, see Sect. 1.2.2. The amount of text
added, deleted, or restored is measured by the number of
words.

We will also keep track of the timepoint when edit-actions
occur by indexing attributes with the revision number. In
the following we assume that the history of a given page is a
sequence of revisions R = (r1, . . . , rN ), ordered by increasing
timestamps 1, . . . , N .

1.2.1 Basic Attributes
Basic attributes are those that have to be computed by

the network construction algorithm; others can be derived
from these, see Sect. 1.2.2.

Attributes on edges. For each timepoint i ∈ {1, . . . , N}
and each pair of authors (u, v) ∈ V × V ,

• deletei(u, v) denotes the number of words deleted by
u in revision ri and written by v at earlier timepoints
j (j < i);

• undeletei(u, v) denotes the number of words restored
by u in revision ri, deleted by v at timepoints j (j <
i), and written by a potentially different author w at
timepoints ` (` < j < i);

• restorei(u, v) denotes the number of words restored
by u in revision ri, written by v at timepoints j (j <
i), and deleted by a potentially different author w at
timepoints ` (j < ` < i).

Note that deletei(u, v), undeletei(u, v), and restorei(u, v),
are equal to zero, if u is not the author of revision ri.

Attributes on nodes. For each timepoint i ∈ {1, . . . , N}
and each author u ∈ V ,



• addi(u) denotes the number of words that are added
by u at time i;

• authorshipi(u) denotes the number of words in revi-
sion ri that have been authored by u, i. e., all words
that have been added to the text by u in a revision
j ≤ i and that are still there in ri.

If u is not the author of ri, then addi(u) equals zero. Note
however, that even in this case authorshipi(u) might be big-
ger than zero. It always holds that addi(u) ≤ authorshipi(u)
since, at time i, u is the author of at least those words
that she added in ri and it holds that authorshipi(u) ≤Pi

j=1 addj(u) since, at time i, u can only be the author of
those words that she added before or at the i’th revision.

1.2.2 Derived Attributes
Starting from the basic attributes we can define a number

of other attributes that characterize pairs of authors (dyadic
variables, defined on edges) or single authors (monadic vari-
ables, defined on nodes). In this section we define these
attributes and describe how they are interpreted.

Attributes on edges. Summing values over all timepoints
yields three weight functions for edges (u, v) ∈ E, that are
given by

delete(u, v) =

NX
i=1

deletei(u, v) ,

and undelete(u, v) and restore(u, v) by similar formulas.
Large values of the weights delete(u, v) and undelete(u, v)

imply a negative relationship from u to v. Indeed, if u deletes
a lot of text written by v, then u apparently disagrees with
v’s contributions to the article. Similarly, if u undeletes a
lot of text that has been previously deleted by v, then u
disagrees with v removing this text from the article. On
the other hand, large values of the weight restore(u, v) im-
ply a positive relationship from u to v, since u defends v’s
contributions against deletion.

The sum over the two negative relations, denoted by

revise(u, v) = delete(u, v) + undelete(u, v) ,

encodes how much u undoes v’s edits. It is interpreted
as a measure of how much u disagrees with v. Similarly,
restore(u, v) is interpreted as a measure of how much u
agrees with v.

Attributes on nodes. Summing the delete and restore

weights of all edges starting from one author u give mea-
sures of how many words u deletes, respectively restores.
Note that it is unnecessary to count the number of undeleted
words, since this count is equal to the number of restored
words.

deletei(u) =
X
v∈V

deletei(u, v) ;

restorei(u) =
X
v∈V

restorei(u, v) =
X
v∈V

undeletei(u, v)

Summing the attributes add, delete, and restore over all
timepoints i = 1, . . . , N defines attributes that summarize

the editing-work of the respective author, given by

add(u) =

NX
i=1

addi(u)

and delete(u) and restore(u) by similar formulas. The at-
tributes add(u), delete(u), and restore(u) characterize u’s
role as being a provider of new content, someone who re-
moves content, or someone who defends content from being
deleted.

At the last timepoint N it holds that authorshipN (u) ≤
add(u), since u can only be author of those words that she
added. (Note that we adopt the convention that u does not
become the author of a word that she restores. Rather, the
author who has originally written that word before deletion
gets her authorship function increased by one.) Normally
authorshipN (u) will be smaller than add(u), since many
words written by u might be deleted afterwards.

A measure of involvement of authors in the Wikipedia
article they edit is given by the sum

activity(u) = add(u) + delete(u) + restore(u) ,

called the edit-activity of author u. It is the number of words
that u touched by adding, deleting, or restoring them.

A further characterization of how an author u contributes
to a page is given by the difference

netadded(u) = add(u) + restore(u)− delete(u) ,

called the net-amount of added words. It is the number
of words by which u increased the length of the text. If
netadded(u) is positive, then u’s intention was apparently
either to increase the text by adding new words or pre-
vent it from being shortened by restoring deleted text. If
netadded(u) is negative, then u’s intention was apparently
to decrease the length of the text by deleting parts of it. The
absolute value of netadded is always bounded by activity.
Thus, for any author with non-zero activity, the ratio

netaddedratio(u) = netadded(u)/activity(u)

lies between minus one and plus one. If netaddedratio(u) =
−1, then u dedicates all her activity to deletion of text and
if netaddedratio(u) = 1, then u dedicates all her activity
to either adding or restoring text.

We call the value

revisor(u) =
X
v∈V

revise(u, v)

(i. e., u’s weighted out-degree with respect to the revise re-
lation) u’s degree as a revisor. It is the number of words that
u deletes after they have been added, or restores after they
have been deleted, i. e., it is a measure that characterizes
the undo-activity of v. Similarly,

revised(u) =
X
v∈V

revise(v, u)

(i. e., u’s weighted in-degree with respect to the revise re-
lation) is called u’s degree as being revised. It is a measure
of how much u’s edits are undone later. It holds that both,
revisor(u) and revised(u), are bounded from above by
activity(u). Actors with revisor ≈ activity show a re-
active behavior, since they dedicate most of their activity
to undo changes made by others. In contrast, actors with



revised ≈ activity are those that do not succeed in mak-
ing any of their edits permanent, as these are mostly undone
afterwards.

2. COMPUTING THE EDIT-NETWORK
In this section we describe in detail how the revision net-

work defined in Sect. 1 is determined from the history of a
Wikipedia page, i. e., from the sequence of its revisions.

2.1 Text-Processing Conventions
In this section we describe the conventions that we adopt

when processing the text, especially how to treat duplicated
text, text that is cut and pasted to a different location, and
edits that are reverts.

We consider the granularity of authorship on the word
level, i. e., each word has exactly one author and different
words may have different authors.

The main point to clarify is whether the ordering of words
is taken into account and how to treat duplicated text. Con-
sidering the ordering of words has an obvious disadvantage
in the context of Wikipedia pages: if an author restructures
the page by cutting and pasting large parts of the text to
different places, then we would count this as massive dele-
tion of text and addition of newly created text. On the other
hand, if we modeled the whole text as an unordered set of
words, it would be impossible to determine authorship of
duplicated words. (Accounting all instances of a word to
the first author who has written it would also be a misinter-
pretation.) To overcome this dilemma, we propose to make
use of the fact that words are assembled to sentences and
we make here the assumption that one sentence represents
one statement, gives one fact, or makes one claim. More
precisely, we will model the whole text as an unordered set
of sentences, which in turn are modeled as ordered lists of
words. In particular, moving a complete sentence to an-
other position, duplicating a complete sentence, or deleting
a duplicated sentence is not considered as a change. Note
however, that two words within the same sentence might
have different authors. For instance, if an author changes a
sentence partially by adding some words to it, she becomes
only the author of the newly added words.

Punctuation and capitalization is used only to determine
the boundaries of sentences. Once the text has been split
into sentences, punctuation and capitalization is ignored.

The last point we have to consider is that many edits on
Wikipedia pages are so-called reverts, i. e., edits that set
back the page to an earlier version. For instance, if a user u
deletes the whole content of a page in revision i and another
user v restores it in revision i+1 to the version i−1, it would
not be reasonable to credit v as the author of the whole text
(actually, she has not written it and might be completely
ignorant of the topic). Rather, we set back the authorship
of all words as it has been assigned in revision i−1 and just
keep track of the fact that v undeletes a lot of text deleted
by u.

Table 1 gives an example of four revisions and the result-
ing authorship of words as determined by the conventions
listed above. In this example Greek letters stand for words
and periods delimit sentences. Note that the third revi-
sion is interpreted in the way that Charlie interchanged
the first and second sentence, deleted γ in sentence α γ δ,
and changed the word α in sentence α β to γ. The inter-
change of the two sentences is established by the fact that

sentence α γ δ and sentence α δ have a common subse-
quence of length two and are, therefore, the most similar
pair of sentences. After the third revision, Charlie is the
author of γ, Alice is the author of β, and Bob is the au-
thor of α and δ. Furthermore, it is accounted that Charlie

deleted one word of Alice (namely the α from α β), deleted
one word of Bob (namely the γ from α γ δ), and added
the γ in sentence γβ. The forth revision is a revert that
makes Charlie’s changes undone. Therefore, Alice deleted
Charlie’s γ, restored her own α, and restored Bob’s γ, set-
ting undelete(Alice, Charlie) = 2.

Table 1: Example of four revisions on a page. Greek
letters stand for words.

author text authorship of words
Alice α β. A(α β)
Bob α β. α γ δ. A(α β), B(α γ δ)
Charlie α δ. γ β. B(α δ), C(γ), A(β)
Alice α β. α γ δ. A(α β), B(α γ δ)

2.2 Input, Datastructures, and Output
A revision, of a Wikipedia-page, is a tuple of the form

r = (time, author, text) ,

where time is the exact timestamp of the revision (given by
the second), author is a real user-name if the contributor of
the revision has been logged in and it is an IP-address if the
revision has been done anonymously, and text is the com-
plete text (i. e., not just the updated parts of it) of the page,
after this revision. Our algorithm gets as input a sequence
R = (r1, . . . , rN ) of revisions ri = (timei, authori, texti) on
the same page, ordered by increasing timestamps. The se-
quence of all revisions of a Wikipedia page (until the current
timepoint) is called its history.

When processing the history, each revision ri, i = 1, . . . , N
will successively by augmented by an unordered set Si =
{si1, . . . , si`i} of sentences sij . Each sentence

sij = (wij1, . . . , wijkij )

is an ordered list of pointers to words wijh. Each word w is
modeled as a triple of the form

w = (charseq(w), author(w), deleter(w)) ,

where charseq(w) is the sequence of characters that make
up the word (identifying the word when comparing parts of
text), author(w) is a pointer to the author who has written
it, and deleter(w) is a pointer to the author who has deleted
it. If the word has not yet been deleted, or if it has been
undeleted afterwards, then the deleter variable might be
arbitrarily set.

A new word w = (charseq(w), author(w), deleter(w))
is only instantiated if it is newly added. In particular, if
a complete sentence sij = (wij1, . . . , wijkij ) is copied from
revision i to revision i + 1, then no new word objects are
instantiated. Rather, the set of sentences Si+1 contains a
sentence that is the identical list of pointers as sij .

Additionally, while processing the sequence of revisions,
we successively build up the edit-network G = (V,E,A).
When processing the revision ri = (timei, authori, texti, Si),
we add u = authori to V (if not already in) and com-
pute the attributes addi(u), deletei(u, v), undeletei(u, v),



and restorei(u, v), for all authors v ∈ V . Note that all
other attributes of the edit-network can be computed from
those basic attributes, or from the authorship associated to
words, respectively. We assume that the counts addi(u),
deletei(u, v), undeletei(u, v), and restorei(u, v) are ini-
tialized with zero and are incremented while processing the
text.



2.3 Algorithm

2.3.1 Processing the First Revision
Let r1 = (time1, author1, text1) be the first revision of

the Wikipedia page. Put u = author1 into the set of authors
V . Split text1 into sentences, remove duplicated sentences,
and split all sentences into words (i. e., sequences of charac-
ters delimited by whitespaces). For each of these character
sequences create a new instance w of a word with author(w)
pointing to u and increment add1(u) by one. Create for each
sentence a list of pointers to its words and put it into the
set of sentences S1.

2.3.2 Processing Subsequent Revisions
Assume that revisions r1, . . . , ri, i ≥ 1, are already pro-

cessed and let ri+1 = (timei+1, authori+1, texti+1) be the
next revision. For the remainder of this Sect. 2, we write u
for authori+1. Put u into V (if not already in).

Determine whether ri+1 is a revert. Compare texti+1

with textj , j = i, . . . , 1 (in that order) for equality. If
texti+1 equals textj for some j = i, . . . , 1, go to Para-
graph 2.3.2.2 if not, continue with Paragraph 2.3.2.1. (Effi-
cient equality testing of texts can, for instance, be done by
using hashcodes.)

2.3.2.1 Handling revisions that are not reverts.
If the revision ri+1 is not a revert, we compare its text to

the set of sentences Si of revision ri in order to determine
which words have been copied, added, or deleted.

Initialize a temporary set of sentences. Let S′i+1 be
the set of sentences determined from texti+1 as in Sect. 2.3.1.
So far, the authorship of words in S′i+1 is undetermined.
Create an empty set of sentences Si+1 that will be filled in
the following steps. At the end of Paragraph 2.3.2.1 the
temporary set S′i+1 is discarded.

Handle sentences that have been copied from ri.
For each sentence s ∈ Si that is also in S′i+1, create a list of
pointers to words identical to s and put it into Si+1 (thereby
these words have the same authors as in revision i). Mark
sentence s as processed both in Si and in S′i+1. No words
are added and no edges induced by copied sentences.

Process successively the most similar pairs of sen-
tences. While there are still unprocessed sentences in Si

and in S′i+1, let (s, s′) be the pair of unprocessed sentences
s ∈ Si and s′ ∈ S′i+1 with the longest common subse-
quence [2] among all those pairs. We consider s′ as a slightly
changed version of s and have to determine which words
have been copied, deleted, or added when going from s to
s′. Mark s and s′ as processed and compute a shortest edit-
script from s to s′ [3].

An edit-script is a sequence ((w1, a1), . . . , (wk, ak)) of pairs
(wj , aj), where the wj are words and the aj are edit-actions
that are either none, delete, or add. If aj is none, then
word wj appears in both sentences, if aj is delete, then
appears in s but not in s′, and if aj is add, then wj appears
not in s but in s′. The order of the edit-script matters. For
instance, if only one word w has been moved from the be-
ginning of a sentence to the end, then the first pair in the
corresponding edit-script is (w,delete) and the last one
is (w,add). Together, all words that are labeled by none
and delete make up the sentence s and all words that are
labeled by none and add make up the sentence s′.

Create an empty sentence s∗ (i. e., an empty list of point-
ers to words) and go over the edit-script from the first to the
last index. If the next pair in the edit script is (w,none),
then create a pointer to w and add it to the end of the sen-
tence s∗. (Thereby the author of w does not change.) If
the next pair in the edit script is (w,delete), then let v be
the author of w. Increment deletei+1(u, v) by one and let
the deleter-variable of w point to u. (No pointer is added
to the sentence s∗.) If the next pair in the edit script is
(w,add), then increment addi+1(u) by one, create a new in-
stance of a word from the sequence of characters w, set its
author-pointer to u, and add a pointer to that word at the
end of the sentence s∗. If all pairs of the edit-script have
been processed, put s∗ into Si+1.

Process deleted sentences. These are all sentences
in Si that are still unprocessed. For each such sentence
s = (w1, . . . , wk) go over all words wh, h = 1, . . . , k, incre-
ment deletei+1(u, author(wh)) by one and set the deleter-
pointer of wh to u.

Process added sentences. These are all sentences in
S′i+1 that are still unprocessed. For each such sentence s =
(w1, . . . , wk) create a list of pointers s∗, go over all words
wh, h = 1, . . . , k, increment addi+1(u) by one, create a new
instance of a word from the sequence of characters wh, set
its author-pointer to u, and add a pointer to that word at
the end of the sentence s∗. When all words of s have been
processed, add s∗ to Si+1.

2.3.2.2 Handling reverts.
Let texti+1 equal textj and let j < i + 1 be the largest

index with this property. Create a set of sentences Si+1 by
copying all lists of pointers of Sj . Thereby all authors in the
i+1’th revision are exactly as in the j’th revision. No words
are added by a revert, i. e., addi+1(u) is not increased. What
remains to do is to update the attributes deletei+1(u, ·),
undeletei+1(u, ·), and restorei+1(u, ·).

For doing this, we compare the set Si+1 with the set Si

in almost the same way as we compared S′i+1 to Si in Para-
graph 2.3.2.1. The steps that are exactly identical to the
corresponding steps in Paragraph 2.3.2.1 are the processing
of copied and deleted words.

The only steps that are slightly changed are those that
process added words. The difference lies in the fact that,
in case of a revert, these words are not added (as in Para-
graph 2.3.2.1) but they are restored. For any restored word
w let v be the author of w and let v′ be the user who
deleted w at some timepoint between j and i + 1 (this au-
thor is pointed at by the deleter variable of w). Increase
the counts restorei+1(u, v) and undeletei+1(u, v′) by one.

3. REFERENCES
[1] U. Brandes, P. Kenis, J. Lerner, and D. van Raaij.

Network analysis of collaboration structure in
Wikipedia. In Proc. 18th Intl. World Wide Web Conf.
(WWW2009), 2009.

[2] D. S. Hirschberg. Algorithms for the longest common
subsequence problem. Journal of the ACM,
24(4):664–675, 1977.

[3] E. W. Myers. An O(nd) difference algorithm and its
variations. Algorithmica, 1(1):251–266, 1986.


